03.08.2013 Views

Androgens in Health and Disease.pdf - E Library

Androgens in Health and Disease.pdf - E Library

Androgens in Health and Disease.pdf - E Library

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Chapter 5/Estrogen Action <strong>in</strong> Males 93<br />

numbers of dopam<strong>in</strong>ergic neurons. Thus, it appears that mascul<strong>in</strong>ization (or<br />

defem<strong>in</strong>ization) of the AvPV requires activation of ERα, presumably dur<strong>in</strong>g development,<br />

<strong>in</strong> order to <strong>in</strong>duce cell death <strong>in</strong> the AvPV of male mice (34).<br />

Regulation of the “tonic” pattern of LH secretion <strong>in</strong> adult male vertebrates clearly<br />

relies on negative feedback by T. Castration results <strong>in</strong> dramatic <strong>in</strong>creases <strong>in</strong> serum LH,<br />

whereas T replacement re<strong>in</strong>states or ma<strong>in</strong>ta<strong>in</strong>s negative feedback on LH synthesis <strong>and</strong><br />

secretion (6,35). A number of studies demonstrated that E 2 treatments can suppress LH<br />

levels <strong>in</strong> castrated male mice <strong>and</strong> rats, but dihydrotestosterone (DHT) can also suppress<br />

serum LH <strong>in</strong> some studies <strong>in</strong> male rodents (6,35,36). Thus, it appears that there<br />

may be some degree of redundancy <strong>in</strong> the receptor paths by which T regulates LH<br />

synthesis <strong>and</strong> secretion.<br />

Characterizations of models of <strong>and</strong>rogen <strong>in</strong>sensitivity, estrogen <strong>in</strong>sensitivity, <strong>and</strong> estrogen<br />

<strong>in</strong>sufficiency further supports the notion of redundant receptor pathways <strong>in</strong>volved <strong>in</strong><br />

T regulation of LH <strong>in</strong> males. For <strong>in</strong>stance, serum LH <strong>and</strong> T levels are elevated <strong>in</strong> Tfm mice<br />

(37) <strong>and</strong> Tfm rats (38,39) <strong>and</strong> there are some cases of <strong>and</strong>rogen <strong>in</strong>sensitivity <strong>in</strong> humans<br />

(40). However, serum LH levels are also elevated <strong>in</strong> the only known ERα-deficient male<br />

patient (41) <strong>and</strong> one aromatase-deficient male patient (42), whereas a second aromatase<br />

deficient adult male patient exhibited only slight elevations <strong>in</strong> serum LH (43). These data<br />

suggest that AR pathways play a significant role <strong>in</strong> mediat<strong>in</strong>g the negative feedback effects<br />

of T on LH but that aromatization <strong>and</strong> activation of ERα also plays a role.<br />

Several l<strong>in</strong>es of evidence from the αERKO model further support a role for both ERα<br />

<strong>and</strong> AR <strong>in</strong> regulat<strong>in</strong>g LH. First, serum LH <strong>and</strong> T levels are only slightly elevated (twofold)<br />

<strong>in</strong> adult αERKO males despite complete E 2 <strong>in</strong>sensitivity (35,36). Second, castration<br />

results <strong>in</strong> dramatic elevations of LH levels <strong>in</strong> both WT <strong>and</strong> αERKO males <strong>and</strong> E 2<br />

treatments suppress the postcastration rise <strong>in</strong> serum LH <strong>in</strong> WT males but not <strong>in</strong> αERKO<br />

males. Third, T or DHT treatments will partly suppress the postcastration rise <strong>in</strong> serum<br />

LH <strong>in</strong> αERKO males. Thus, AR signal<strong>in</strong>g is sufficient to ma<strong>in</strong>ta<strong>in</strong> relatively normal<br />

serum LH levels <strong>in</strong> the absence of <strong>in</strong>tact ERα signal<strong>in</strong>g, but ERα pathways can also<br />

effectively suppress synthesis <strong>and</strong> secretion of LH <strong>in</strong> WT males. Furthermore, the estrogen<br />

<strong>in</strong>sensitivity observed <strong>in</strong> αERKO males coupled with normal serum LH values <strong>in</strong><br />

βERKO males suggest that ERβ does not play a significant role <strong>in</strong> mediat<strong>in</strong>g negative<br />

feedback effects on LH synthesis <strong>and</strong> secretion <strong>in</strong> males.<br />

Testicular feedback regulation of follicle-stimulat<strong>in</strong>g hormone (FSH) is more complicated<br />

<strong>and</strong> <strong>in</strong>volves a comb<strong>in</strong>ation of testicular T <strong>and</strong> testicular <strong>in</strong>hib<strong>in</strong>. It appears that<br />

there may be some species differences <strong>in</strong> the degree of dependence on estrogen <strong>and</strong> ER<br />

vs <strong>in</strong>hib<strong>in</strong> regulation of FSH <strong>in</strong> male rodents <strong>and</strong> primates. For <strong>in</strong>stance, aromatasedeficient<br />

<strong>and</strong> ERα-deficient humans exhibit elevated FSH (41,42), whereas ARKO <strong>and</strong><br />

αERKO males exhibit normal serum FSH levels (22,35,44,45). This implies that testicular<br />

<strong>in</strong>hib<strong>in</strong> may play a more important role <strong>in</strong> rodent models. Indeed, castration causes<br />

significant elevations of serum FSH <strong>in</strong> both WT <strong>and</strong> αERKO males, whereas E 2 or T<br />

treatments suppress serum FSH only <strong>in</strong> the castrated WT (35), suggest<strong>in</strong>g that aromatization<br />

<strong>and</strong> activation of ERα plays a role <strong>in</strong> suppression of FSH <strong>in</strong> normal WT male<br />

mice. The fact that T <strong>and</strong> DHT treatments failed to suppress serum FSH <strong>in</strong> castrated<br />

αERKO males further suggests that the normal serum FSH levels observed <strong>in</strong> <strong>in</strong>tact<br />

αERKO males are the result of the feedback effects of testicular <strong>in</strong>hib<strong>in</strong>s (35). Thus,<br />

although both <strong>in</strong>hib<strong>in</strong>s <strong>and</strong> T regulate FSH <strong>in</strong> humans <strong>and</strong> mice, it appears that <strong>in</strong>hib<strong>in</strong><br />

feedback more effectively substitutes for deficiencies <strong>in</strong> estrogen signal<strong>in</strong>g <strong>in</strong> mice.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!