18.08.2013 Views

Soner Bekleric Title of Thesis: Nonlinear Prediction via Volterra Ser

Soner Bekleric Title of Thesis: Nonlinear Prediction via Volterra Ser

Soner Bekleric Title of Thesis: Nonlinear Prediction via Volterra Ser

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

3.1. NONLINEAR PROCESSES VIA THE VOLTERRA SERIES 30<br />

Y (fi) = H1(fi) X(fi)<br />

<br />

+<br />

YL(fi)<br />

<br />

H2(fj, fk)X(fj)X(fk)<br />

+<br />

fj+fk=fi<br />

<br />

YQ(fi)<br />

<br />

H3(fl, fm, fs) X(fl)X(fm)X(fs)<br />

fl+fm+fs=fi<br />

<br />

YC(fi)<br />

<br />

= ˆ Y (fi) + ε(fi) (3.5)<br />

where X(·) and Y (·) are discrete FT’s <strong>of</strong> input and output data, ˆ Y (·) = YL(·) +<br />

YQ(·) + YC(·) is the model output (prediction). εfi<br />

denotes the difference between<br />

original and model output at a given frequency. H1(·), H2(·, ·), and H3(·, ·, ·) are<br />

linear, quadratic, and cubic transfer functions <strong>of</strong> a <strong>Volterra</strong> series (Nam and Powers,<br />

1994).<br />

3.1.3 Symmetry property <strong>of</strong> <strong>Volterra</strong> kernels<br />

Second-order and higher orders <strong>of</strong> <strong>Volterra</strong> kernels have symmetries properties that<br />

are provided in this section. If I rearrange equation (3.2) and interchange σ’s, I<br />

have the following symmetry <strong>of</strong> kernels:<br />

y(t) =<br />

∞<br />

k=1<br />

<br />

1 ∞ ∞<br />

dσ1 · · ·<br />

k! −∞<br />

−∞<br />

dσkh ∗ k<br />

k(σ2, σ1 . . . , σk)<br />

p=1<br />

x(t − σp). (3.6)<br />

where in this example σ1 and σ2 are switched because all integrations <strong>of</strong> the system<br />

are from −∞ to +∞ and x(t − σ1)x(t − σ2) = x(t − σ2)x(t − σ1) so that equations<br />

(3.2) and (3.6) have the same value.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!