18.08.2013 Views

Soner Bekleric Title of Thesis: Nonlinear Prediction via Volterra Ser

Soner Bekleric Title of Thesis: Nonlinear Prediction via Volterra Ser

Soner Bekleric Title of Thesis: Nonlinear Prediction via Volterra Ser

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

3.2. NONLINEAR MODELING OF TIME SERIES 34<br />

White<br />

Noise<br />

Sequence<br />

et<br />

crrr bqq ap c b2q c222 c221 b22 c b c112<br />

c111 b<br />

z<br />

+<br />

Σ<br />

Σ<br />

2rr a 2 1rr 1q 11 1<br />

−<br />

z<br />

a<br />

z<br />

xt<br />

AR<br />

Sequence<br />

Figure 3.3: <strong>Volterra</strong> AR diagram. Modified from Marple (1987) and Ulrych and<br />

Sacchi (2005). The coefficients <strong>of</strong> the linear term <strong>of</strong> the <strong>Volterra</strong> series are given by<br />

a1, · · · , ap, the coefficients <strong>of</strong> the quadratic term <strong>of</strong> the <strong>Volterra</strong> series are given by<br />

b11, · · · , bqq, and the coefficients <strong>of</strong> the cubic term <strong>of</strong> the <strong>Volterra</strong> series are given by<br />

c111, · · · , crrr.<br />

Equation (3.14) clearly states that I have more flexibility to model the deterministic<br />

part <strong>of</strong> the complex signal when the nonlinear terms are incorporated in the model.<br />

The third-order <strong>Volterra</strong> representation <strong>of</strong> the data requires the estimation <strong>of</strong><br />

p + q 2 + r 3 coefficients: ai, i = 1, . . . , p, bjk, j, k = 1, . . . , q, and clms, l, m, s =<br />

1, . . . , r. I will use symmetry properties <strong>of</strong> the <strong>Volterra</strong> series to reduce the number<br />

<strong>of</strong> coefficients <strong>of</strong> the quadratic contribution from q 2 to (q (q + 3)/2 − q) and the<br />

number <strong>of</strong> coefficients <strong>of</strong> the cubic contribution from r 3 to (r 2 + r!/(r − 3)!3!).<br />

Table 3.1 shows various filter lengths and the number <strong>of</strong> prediction coefficients<br />

using symmetry arguments <strong>of</strong> a <strong>Volterra</strong> series. It can be seen that the number <strong>of</strong><br />

parameters increases dramatically with a small increment in the filter order.<br />

Again, I can use forward and backward prediction<br />

x f p<br />

n = a<br />

i=1<br />

f<br />

q q<br />

i xn−i+ b<br />

j=1 k=1<br />

f<br />

jk xn−jxn−k+<br />

r r r<br />

l=1 m=1 s=1<br />

c f<br />

lms xn−lxn−mxn−s + εn , (3.15)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!