22.01.2014 Views

user's manual for corhyd: an internal diffuser hydraulics model - IfH

user's manual for corhyd: an internal diffuser hydraulics model - IfH

user's manual for corhyd: an internal diffuser hydraulics model - IfH

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

(16) solved <strong>for</strong> r in (15) <strong>an</strong>d assuming a rough regime, where λ is independent of the flow<br />

velocity gives<br />

L dv<br />

g dt + v²<br />

2g + z O,a - z b - ⎜ ⎛ ( z O,a - z ) b 2g<br />

⎝ v ⎠ ⎟⎞<br />

b ²<br />

+1 v²<br />

2g ) = 0<br />

L dv<br />

g dt<br />

+ z O,a - z b - ( z O,a - z ) b v²<br />

v b ²<br />

= 0<br />

L dv<br />

g dt<br />

+ (z O,a - z b ) ⎜ ⎛ 1- v²<br />

⎝ v ⎠ ⎟⎞<br />

b ²<br />

= 0<br />

L v b ²<br />

dt =<br />

-g(z O,a - z b ) v b ²-v² dv<br />

t xdt L v x v b ²<br />

=<br />

⌡⌠ -g(z O,a - z b )⌡ ⌠ v b ²-v² dv, where v x = x v b, when the velocity ratio of the prevailing<br />

t a<br />

v a<br />

velocity v x <strong>an</strong>d the terminal steady velocity v b is x.<br />

Lv b<br />

t x - t a =<br />

-g(z O,a - z b ) ⎝ ⎜⎛ arctgh⎜ ⎛ v x<br />

⎠ ⎟⎞<br />

⎝ v ⎠ ⎟⎞ -arctgh ⎜ ⎛ v a<br />

b ⎝ v ⎠ ⎟⎞<br />

b<br />

For t a = 0 t x is the time needed to reach the velocity v x = x v b :<br />

Lv b<br />

t x =<br />

-g(z O,a - z b ) ⎝ ⎜⎛ arctgh⎜ ⎛ v x<br />

⎠ ⎟⎞<br />

⎝ v ⎠ ⎟⎞ -arctgh ⎜ ⎛ v a<br />

b ⎝ v ⎠ ⎟⎞<br />

b<br />

or using z O,a - z b = -(1+r) ⎜ ⎛ v b ²<br />

⎝ 2g⎠ ⎟⎞ it is<br />

2L<br />

t x =<br />

(1+r)v b ⎝ ⎜⎛ arctgh⎜ ⎛ v x<br />

⎠ ⎟⎞<br />

⎝ v ⎠ ⎟⎞ -arctgh ⎜ ⎛ v a<br />

b ⎝ v ⎠ ⎟⎞<br />

(17)<br />

b<br />

For example applying (17) <strong>for</strong> x = 0.99 <strong>an</strong>d a 4 km long outfall <strong>an</strong> acceleration from<br />

v a = 0.6 m/s to v x = 0.99*1.2 m/s takes aprox. 2 min. until reaching a velocity of 1 % smaller<br />

th<strong>an</strong> the terminal steady flow velocity v b = 1.2 m/s. Headwork design there<strong>for</strong>e has to<br />

consider storage volumes of discharges, which are causing water level ch<strong>an</strong>ges<br />

increasing/decreasing faster th<strong>an</strong> the fluid in the outfall accelerates. Decreasing discharges<br />

furthermore may lead to a situation, where moving fluid in the outfall sucks the effluent from<br />

the headworks even beyond the equilibrium level <strong>an</strong>d afterwards swings back <strong>an</strong>d seawater is<br />

sucked in the outfall. Latter has critical effects on valves mounted on discharge ports.<br />

CorHyd allows to <strong>an</strong>alyze the <strong>internal</strong> <strong>diffuser</strong> <strong>hydraulics</strong> <strong>for</strong> steady flow conditions be<strong>for</strong>e<br />

acceleration or deceleration processes started or after they ended. All unsteady conditions in<br />

between during all times t c<strong>an</strong> be <strong>an</strong>alyzed by applying CorHyd with the actual flowrate Q(t)<br />

in the pipeline. This is based on the assumption, that the additional pressure in the outfall is<br />

not available <strong>for</strong> ch<strong>an</strong>ging local parameters (e.g. discharge at one specific port), because<br />

inertia of the whole water mass prevents local accelerations or decelerations, which are not<br />

directly related to the general flow ch<strong>an</strong>ges.<br />

Similar considerations c<strong>an</strong> be done <strong>for</strong> the other boundary, the sea water level, <strong>for</strong> example<br />

due to tidal ch<strong>an</strong>ges. These will lead to the same results as <strong>for</strong> ch<strong>an</strong>ging the available head at<br />

the headworks. But high frequent ch<strong>an</strong>ges like waves, which additionally are local events<br />

(wave crest above one riser <strong>an</strong>d wave trough above other) may cause fast pressure ch<strong>an</strong>ges at<br />

the <strong>diffuser</strong> outlets. This c<strong>an</strong> have effects on the flowrate distribution, if the fluid volume in<br />

the riser/port configuration is relatively small (i.e. <strong>for</strong> holes in the <strong>diffuser</strong> wall) compared to<br />

the additional <strong>for</strong>cing causing decelerations or accelerations.<br />

Institut für Hydromech<strong>an</strong>ik, Universität Karlsruhe 26

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!