22.01.2014 Views

user's manual for corhyd: an internal diffuser hydraulics model - IfH

user's manual for corhyd: an internal diffuser hydraulics model - IfH

user's manual for corhyd: an internal diffuser hydraulics model - IfH

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Fig. 22: Graphical output: Energy <strong>an</strong>d Hydraulic grade line of the whole system <strong>an</strong>d the <strong>diffuser</strong><br />

Graphical output <strong>for</strong> T-Diffuser: In progress<br />

6 Design <strong>an</strong>d optimization<br />

The governing equation <strong>for</strong> the individual port discharge is equation (20). Equation (18) in<br />

(20) devided by q i <strong>an</strong>d squared gives:<br />

i<br />

⎛ ⎞<br />

⎜∑<br />

q<br />

k ⎟<br />

2<br />

=<br />

( ) ( )<br />

⎝ k 1 ⎠<br />

p<br />

d,i<br />

− p<br />

a,i<br />

+ 2g z<br />

d,i<br />

− z<br />

jet,i<br />

+<br />

2<br />

ρ<br />

e<br />

A<br />

d,i<br />

1 =<br />

(24)<br />

2<br />

2<br />

2 2 n p,i<br />

n<br />

⎛ ⎞ ⎛ λ ⎞<br />

r ,i<br />

q α<br />

⎛ ⎞ ⎛ λ ⎞<br />

i i<br />

∑⎜<br />

q α<br />

p,i, jL<br />

i i<br />

p,i, j<br />

r,i, j r,i, j<br />

+ ⎟ ⎜ζ<br />

+ ⎟ + ∑⎜<br />

q<br />

L<br />

i<br />

⎟ ⎜ζ<br />

+ ⎟<br />

2<br />

( )<br />

p,i, j<br />

r,i, j<br />

C A<br />

j=<br />

1 ⎝ A<br />

p,i, j ⎠ ⎝ D<br />

p,i, j ⎠ j=<br />

1 ⎝ A<br />

r,i, j ⎠ ⎝ D<br />

r,i, j ⎠<br />

c,i<br />

p,i<br />

where the losses along the <strong>diffuser</strong> are included in the <strong>internal</strong> pressure p d,i from equation<br />

(18).<br />

The first two terms in the numerator denote the difference of the piezometric head (hydraulic<br />

2<br />

head) ( p<br />

d,i<br />

− p<br />

a,i<br />

) + 2g( z<br />

d,i<br />

− z<br />

jet, i<br />

) = ∆ i between the <strong>diffuser</strong> <strong>an</strong>d the ambient. The third term<br />

ρ<br />

e<br />

in the numerator is related to the <strong>diffuser</strong> velocities v d,i . The terms in the denominator are<br />

related to the jet velocity v j , i = α i q i /(C c A p,i ) <strong>an</strong>d the port <strong>an</strong>d riser losses. For outfalls with<br />

uni<strong>for</strong>m geometries or <strong>for</strong> uni<strong>for</strong>m <strong>diffuser</strong> sections with uni<strong>for</strong>m port/riser groups it follows<br />

A i = A = const., α i = α = const., D i = D = const., L i = L = const.. Assuming a uni<strong>for</strong>m flow<br />

distribution among the orifices gives v r,i = v r <strong>an</strong>d v p,i = v p = const.. There<strong>for</strong>e all losses but the<br />

riser inlet loss <strong>an</strong>d the port exit loss are const<strong>an</strong>t (λ i = λ = const., ζ p,i = ζ p ). Under these<br />

assumptions only few parameters ch<strong>an</strong>ge along the <strong>diffuser</strong> causing the variation of individual<br />

flows. The other parameters c<strong>an</strong> be joint in const<strong>an</strong>ts C i :<br />

1 =<br />

∆ i + v d,i ²<br />

C 1 /C c,i 2 + C 2 ζ dr,i<br />

(25)<br />

For <strong>diffuser</strong> without risers it is:<br />

Institut für Hydromech<strong>an</strong>ik, Universität Karlsruhe 46<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!