22.01.2014 Views

user's manual for corhyd: an internal diffuser hydraulics model - IfH

user's manual for corhyd: an internal diffuser hydraulics model - IfH

user's manual for corhyd: an internal diffuser hydraulics model - IfH

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

elevation difference between <strong>diffuser</strong> centerline <strong>an</strong>d jet centerline, plus dynamic pressure<br />

difference between the <strong>diffuser</strong> <strong>an</strong>d one single jet plus the losses occurring in all pipe<br />

segments between these points.<br />

p<br />

d,i<br />

=<br />

p<br />

( ) ( ) i<br />

2<br />

ρe<br />

2 ρe<br />

⎛ ⎞<br />

α<br />

2 iqi<br />

− ⎜ q<br />

2<br />

k ⎟<br />

C A<br />

2Ad,i<br />

⎝ k=<br />

1 ⎠<br />

a,i<br />

+ ρeg(z<br />

jet,i<br />

− zd,i<br />

) +<br />

∑<br />

ρeq<br />

Losses i =<br />

2<br />

2<br />

i<br />

⎡<br />

⎢<br />

⎢<br />

⎣<br />

n<br />

p,i<br />

∑<br />

j=<br />

1<br />

2<br />

⎛<br />

⎜<br />

α<br />

⎝ A<br />

i<br />

p,i, j<br />

c,i<br />

2<br />

p,i<br />

⎞ ⎛<br />

⎟ ⎜ζ<br />

⎠ ⎝<br />

p,i, j<br />

λ<br />

p,i, jL<br />

+<br />

D<br />

p,i, j<br />

p,i, j<br />

⎞<br />

⎟ +<br />

⎠<br />

n<br />

r ,i<br />

∑<br />

j=<br />

1<br />

⎛<br />

⎜<br />

⎝<br />

1<br />

A<br />

r,i, j<br />

+ Losses i<br />

2<br />

⎞ ⎛<br />

⎟ ⎜ζ<br />

⎠ ⎝<br />

r,i, j<br />

λ<br />

r,i, jL<br />

+<br />

D<br />

C c,i denotes the jet contraction coefficient either given by the user or calculated iteratively if<br />

Duckbill Valves are applied C c,i,DBV = α i q i / (V DBV,i A p,i ) with V DBV,i = duckbill jet velocity<br />

dependent on discharge. If multiple ports are applied a single jet discharge is q jet,i = α i q i with<br />

α i = 1/(number of ports at a riser at position i).<br />

Solving eq. (18) = (19) <strong>for</strong> <strong>an</strong> individual discharge q i gives<br />

i−1<br />

2<br />

nd ,i−1<br />

2<br />

⎛ ⎞ 1 1<br />

Ld,i−<br />

1,j<br />

( p<br />

−<br />

) (<br />

−<br />

) ∑ ⎢ ∑<br />

⎜<br />

⎟<br />

d,i 1<br />

− pa,i<br />

+ 2g zd,i<br />

1<br />

− z<br />

jet,i<br />

+ ⎜ qk<br />

⎟ +<br />

ζ<br />

−<br />

+ λ<br />

2<br />

2<br />

d,i 1,j d,i−1,j<br />

⎥<br />

ρ<br />

e<br />

⎝ k=<br />

1 ⎠ ⎢⎣<br />

Ad,i−<br />

1 j= 1 A<br />

− ⎝<br />

D<br />

d,i 1,j<br />

d,i−<br />

j ⎠⎥<br />

q =<br />

1, ⎦ (20)<br />

i<br />

2<br />

2<br />

2 np,i<br />

n<br />

α ⎛ ⎞ ⎛ λ ⎞<br />

r ,i<br />

⎛ ⎞ ⎛ λ ⎞<br />

i<br />

( )<br />

∑⎜<br />

αi<br />

p,i,jLp,i,j<br />

r,i,j r,i,j<br />

+ ⎟ ⎜ζ<br />

+ ⎟ + ∑⎜<br />

1<br />

L<br />

⎟ ⎜ζ<br />

+ ⎟<br />

2<br />

p,i,j<br />

r,i,j<br />

C<br />

c,iAp,i<br />

j=<br />

1 A<br />

p,i,j<br />

Dp,i,<br />

j j=<br />

1 A<br />

r,i,j<br />

Dr,i,<br />

j<br />

⎝<br />

⎠<br />

⎝<br />

⎡<br />

For simple <strong>diffuser</strong>s equation (20) reduces to equation (21) if no risers <strong>an</strong>d no port<br />

configurations are applied <strong>an</strong>d the <strong>diffuser</strong> is just represented by simple holes in the pipe wall.<br />

Equation (21) is the one presented in Fischer et al., 1979 which has been used <strong>for</strong> simple<br />

<strong>diffuser</strong> calculations.<br />

i−1<br />

2<br />

⎡<br />

n −1<br />

2<br />

⎛ ⎞ 1<br />

d,i<br />

1 ⎛<br />

L ⎞⎤<br />

d,i−<br />

j<br />

q = ( − ) + ⎜∑<br />

⎟ ⎢ + ∑<br />

⎜ζ<br />

+ λ<br />

1, ⎟<br />

i<br />

C<br />

c,iA<br />

p,i<br />

p<br />

d,i−1<br />

p<br />

a,i<br />

q<br />

⎥ (21)<br />

k<br />

2<br />

2<br />

ρ<br />

⎝ ⎠ ⎢<br />

d,i−1,<br />

j d,i−1,<br />

j<br />

e<br />

k=<br />

1<br />

=<br />

⎣A<br />

d,i−1<br />

j 1 A<br />

d,i−1,<br />

j ⎝<br />

D<br />

d,i−1,<br />

j ⎠⎥⎦<br />

Fischer et al. (1979) defined a loss coefficient C c,i <strong>for</strong> sharp-edged entr<strong>an</strong>ces:<br />

⎠<br />

⎝<br />

⎠<br />

⎝<br />

⎛<br />

r,i, j<br />

⎠<br />

r,i, j<br />

⎞⎤<br />

⎟⎥<br />

⎠⎥<br />

⎦<br />

⎞⎤<br />

(19)<br />

C<br />

c,i<br />

⎛<br />

0.58 ⎜⎛<br />

= 0.63 − ⎜⎜<br />

2g<br />

⎝<br />

⎝<br />

i−1<br />

∑<br />

k=<br />

1<br />

q<br />

k<br />

2<br />

⎞<br />

⎟<br />

⎠<br />

⎡ 1<br />

⎢<br />

⎢⎣<br />

A<br />

d,i<br />

2<br />

−1<br />

⎤⎛<br />

⎜ 2<br />

⎥<br />

⎥<br />

⎜<br />

⎦<br />

ρ<br />

⎝<br />

e<br />

( p − p )<br />

d,i−1<br />

a,i<br />

⎛<br />

+ ⎜<br />

⎝<br />

i−1<br />

∑<br />

k=<br />

1<br />

q<br />

k<br />

2<br />

⎞<br />

⎟<br />

⎠<br />

⎡ 1<br />

⎢<br />

⎢⎣<br />

A<br />

d,i<br />

2<br />

−1<br />

⎤⎞<br />

⎥<br />

⎟<br />

⎥⎟<br />

⎦⎠<br />

−1<br />

⎞<br />

⎟<br />

⎟<br />

⎠<br />

<strong>an</strong>d <strong>for</strong> bell-mouthed ports:<br />

C<br />

c,i<br />

⎛<br />

⎜<br />

= 0.975⎜1<br />

−<br />

⎝<br />

1<br />

2g<br />

⎛<br />

⎜<br />

⎝<br />

i−1<br />

∑<br />

k=<br />

1<br />

q<br />

k<br />

2<br />

⎞<br />

⎟<br />

⎠<br />

⎡ 1<br />

⎢<br />

⎢⎣<br />

A<br />

2<br />

d,i−1<br />

⎤⎛<br />

⎜ 2<br />

⎥<br />

⎥<br />

⎜<br />

⎦<br />

ρ<br />

⎝<br />

e<br />

( p − p )<br />

d,i−1<br />

a,i<br />

⎛<br />

+ ⎜<br />

⎝<br />

i−1<br />

∑<br />

k=<br />

1<br />

q<br />

k<br />

2<br />

⎞<br />

⎟<br />

⎠<br />

⎡ 1<br />

⎢<br />

⎢⎣<br />

A<br />

2<br />

d,i−1<br />

⎤⎞<br />

⎥⎟<br />

⎥⎟<br />

⎦⎠<br />

−1<br />

⎞<br />

⎟<br />

⎟<br />

⎠<br />

3 / 8<br />

CorHyd furthermore allows to apply Duckbill valves also on simple <strong>diffuser</strong> systems <strong>an</strong>d<br />

there<strong>for</strong>e uses the previously defined additional local loss <strong>for</strong>mulations, which are<br />

additionally integrated in the calculations of the coefficient C c .<br />

Institut für Hydromech<strong>an</strong>ik, Universität Karlsruhe 30

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!