02.05.2014 Views

Search - OECD Nuclear Energy Agency

Search - OECD Nuclear Energy Agency

Search - OECD Nuclear Energy Agency

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Substitution of (9) into (8), and use of equation (10) yields:<br />

∑<br />

(2)<br />

( Σ Φ )<br />

D2<br />

D m +<br />

n (1, w)<br />

= −<br />

Φ<br />

m<br />

(1)<br />

m ( iw + α<br />

m<br />

) N<br />

m<br />

From the fundamental mode approximation, we obtain:<br />

Considering (13) the CPSD 12<br />

(w) will be:<br />

∑<br />

(2)<br />

( Σ Φ )<br />

D<br />

D 0 +<br />

n<br />

0 2 ( 1, w)<br />

= −<br />

Φ<br />

0<br />

(1)<br />

m ( iw + α<br />

0<br />

) N<br />

0<br />

N<br />

∑ − 1<br />

D1<br />

( CPSD12<br />

( w))<br />

0<br />

= Sog<br />

n<br />

( exp( −iw(<br />

tf1<br />

− nT )) Wn<br />

1<br />

⎢<br />

p<br />

n= 0 +<br />

Φ Φ ⎣(<br />

(<br />

0<br />

0<br />

,<br />

0<br />

)<br />

v<br />

1<br />

(12)<br />

(13)<br />

⎡ C(<br />

D ⎤<br />

2<br />

)<br />

⎥<br />

α + iw)<br />

(14)<br />

⎦<br />

D1<br />

Where W<br />

n<br />

, is a weight factor that depends on the transfer function of the detector D 1<br />

(source<br />

detector).<br />

∫<br />

D 1 D1<br />

D1<br />

W = dw2<br />

exp( −iw2(<br />

tf1<br />

− nT )) h ( w2<br />

) = h ( tf1<br />

− nT<br />

n<br />

)<br />

(15)<br />

We note that h D1 ( tf nT 1<br />

− ) becomes zero by the causality condition when nT > tf1.<br />

And C(D 2<br />

) depends of the system detector D 2<br />

:<br />

3<br />

∫ d r∫ S<br />

( r´)<br />

∫ dv´<br />

∫<br />

C ρ (16)<br />

(2)<br />

+<br />

( D2 ) = dΩ´<br />

f<br />

sp<br />

( v´,<br />

Ω´)<br />

Σ<br />

D<br />

Φ<br />

0<br />

(1) Φ<br />

0<br />

(1)<br />

Being detector D 2<br />

one of the system detectors and C(D 2<br />

) is a function of the location of this<br />

detector, the source neutron distribution ρ , inside the target, and the direct and adjoint fluxes Φ 0<br />

(1)<br />

S<br />

+<br />

and Φ<br />

0<br />

(1)<br />

. From the phase and amplitude diagram of CPSD 12<br />

(w), we can get the α<br />

0<br />

value and from<br />

this value and the previous calculated Λ value the k eff<br />

. From this methodology we can know the pole<br />

( α<br />

0<br />

) location independently of the source, it means that can be used for all sub-critical systems,<br />

always with k eff<br />

values ranging from 0.94 to 1.<br />

The graphical representation of the Equation (14) is showed on the Figure 1 and with data from<br />

the simulation as we will show later.<br />

834

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!