13.11.2014 Views

chapter 6 - Analog IC Design.org

chapter 6 - Analog IC Design.org

chapter 6 - Analog IC Design.org

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapter 6 – Section 2 (5/2/04) Page 6.2-24<br />

Increasing the Magnitude of the Output Pole †<br />

The magnitude of the output pole , p 2 , can be increased by introducing gain in the Miller<br />

capacitor feedback path. For example,<br />

M10<br />

M11<br />

Fig. 6.2-15B<br />

M8<br />

M12<br />

C c<br />

M9<br />

V Bias<br />

V DD<br />

C gd6<br />

C<br />

r c<br />

M7<br />

ds8<br />

+ +<br />

v OUT<br />

Iin R 1 V 1 Vs8 R 2 C 2<br />

gm8Vs8<br />

- -<br />

M6<br />

V SS<br />

The resistors R 1 and R 2 are defined as<br />

1<br />

R 1 = g ds2 + g ds4 + g ds9<br />

and R 2 =<br />

g m6 V 1<br />

g m6 V 1<br />

+<br />

V out<br />

-<br />

C gd6 C c<br />

+<br />

+<br />

Iin R 1 V1 1<br />

R 2 C 2<br />

gm8 V s8<br />

- g m8 V s8 -<br />

1<br />

g ds6 + g ds7<br />

where transistors M2 and M4 are the output transistors of the first stage.<br />

Nodal equations:<br />

⎛ g<br />

⎜ m8 sC c<br />

⎞<br />

⎡<br />

⎤<br />

⎟<br />

⎢<br />

⎥<br />

I in = G 1 V 1 -g m8 V s8 = G 1 V 1 -⎜<br />

⎟<br />

⎝<br />

g m8 + sC c<br />

V out and 0 = g m6 V 1 + ⎢G ⎥<br />

⎣ 2 +sC 2 + g m8sC c<br />

g m8 +sC c<br />

V out<br />

⎠<br />

+<br />

V out<br />

-<br />

⎦<br />

†<br />

B.K. Ahuja, “An Improved Frequency Compensation Technique for CMOS Operational Amplifiers,” IEEE J. of Solid-State Circuits, Vol. SC-18,<br />

No. 6 (Dec. 1983) pp. 629-633.<br />

CMOS <strong>Analog</strong> Circuit <strong>Design</strong> © P.E. Allen - 2004<br />

Chapter 6 – Section 2 (5/2/04) Page 6.2-25<br />

Increasing the Magnitude of the Output Pole - Continued<br />

Solving for the transfer function V out /I in gives,<br />

V out<br />

I in<br />

⎛<br />

⎜<br />

= ⎜ ⎝<br />

-g m6<br />

⎞<br />

⎟<br />

⎟<br />

⎠<br />

G 1 G 2<br />

⎣<br />

⎢ ⎢⎢⎡<br />

⎛<br />

⎜<br />

⎜<br />

⎝<br />

⎡ C<br />

⎢ c<br />

1 + s⎢<br />

⎣<br />

g + C 2<br />

m8 G + C c<br />

2<br />

⎟<br />

⎟<br />

⎠<br />

1 + sC c ⎞<br />

g m8<br />

⎤<br />

⎥<br />

⎥<br />

⎦<br />

G + g m6C c<br />

2 G 1 G 2<br />

⎛<br />

⎜<br />

+ s2<br />

⎜ ⎝<br />

C c C 2<br />

g m8 G 2<br />

Using the approximate method of solving for the roots of the denominator gives<br />

-1<br />

-6<br />

p 1 = C c<br />

g m8<br />

+ C c<br />

G 2<br />

+ C 2<br />

G 2<br />

+ g m6C c<br />

≈ g m6 r ds<br />

2C c<br />

G 1 G 2<br />

and<br />

p 2 ≈<br />

- g m6r ds<br />

2C c<br />

6<br />

C c C 2<br />

g m8 G 2<br />

= g m8r ds<br />

2G 2<br />

⎛<br />

⎜<br />

6 ⎜ ⎝<br />

g m6<br />

⎞<br />

C 2<br />

⎟<br />

⎟<br />

⎠<br />

⎛<br />

⎜<br />

= ⎜ ⎝<br />

g m8 r ds<br />

⎞<br />

3 |p 2 ’|<br />

where all the various channel resistance have been assumed to equal r ds and p 2 ’ is the<br />

output pole for normal Miller compensation.<br />

Result:<br />

Dominant pole is approximately the same and the output pole is increased by ≈ g m r ds .<br />

⎟<br />

⎟<br />

⎠<br />

⎞<br />

⎟<br />

⎟<br />

⎠<br />

⎦ ⎥⎥⎥⎤<br />

CMOS <strong>Analog</strong> Circuit <strong>Design</strong> © P.E. Allen - 2004

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!