06.07.2015 Views

Textbook pdf's

Textbook pdf's

Textbook pdf's

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Solution<br />

We start by drawing position and vector diagrams where represents the velocity<br />

of the wind and v ! w !<br />

represents the velocity of the airplane in kilometres per hour.<br />

NW<br />

W<br />

SW<br />

N<br />

S<br />

NE<br />

458<br />

E<br />

SE<br />

w, )w ) = 100<br />

458<br />

v, )v ) = 400<br />

w, )w ) = 100<br />

458<br />

v + w, resultant<br />

v, )v ) = 400<br />

Position diagram<br />

Vector diagram<br />

Use the cosine law to determine the magnitude of the resultant velocity.<br />

0 v ! 0 v ! w !<br />

w ! 0 2 0 v ! 0 2 0 w ! 0 2 2 0 v ! 00w ! 0 cos u, u 45°, 0 w ! 0 100, 0 v ! 0 400<br />

0 2 400 2 100 2 21100214002cos 45°<br />

0 v ! w ! 0 2 160 000 10 000 80 000 a 1 V2 b<br />

0 v ! w ! 0 2 80 000<br />

170 000 <br />

0 v ! w ! V2<br />

0 336.80<br />

To state the required velocity, the direction of the resultant vector is needed. Use<br />

the sine law to calculate a, the angle between the velocity vector of the plane and<br />

the resultant vector.<br />

w, )w ) = 100<br />

458<br />

)v + w* = 336.80<br />

a<br />

v, )v ) = 400<br />

sin a sin 45°<br />

<br />

100 336.80<br />

100sin 45°<br />

sin a 0.2099<br />

336.80<br />

a 12.1°<br />

Therefore, the resultant velocity is approximately<br />

(or W77.9°N).<br />

336.80 km>h, N12.1°W<br />

366 7.2 VELOCITY<br />

NEL

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!