09.12.2012 Views

NAMS 2002 Workshop - ICOM 2008

NAMS 2002 Workshop - ICOM 2008

NAMS 2002 Workshop - ICOM 2008

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Membrane Contactors – 1 – Keynote<br />

Friday July 18, 2:15 PM-3:00 PM, O’ahu/Waialua<br />

Modelling Aroma Stripping Under Various Forms of Membrane Distillation<br />

Processes<br />

G. Jonsson (Speaker), Technical University of Denmark, Lyngby, Denmark - gj@kt.dtu.dk<br />

Concentration of fruit juices by membrane distillation is an interesting process as<br />

it can be done at low temperature giving a gentle concentration process with little<br />

deterioration of the juices. Since the juices contains many different aroma<br />

compounds with a wide range of chemical properties such as volatility, activity<br />

coefficient and vapor pressure, it is important to know how these aroma<br />

compounds will eventually pass through the membrane.<br />

Experiments have been made on an aroma model solution and on black currant<br />

juice in a lab scale membrane distillation set up which can be operated in various<br />

types of MD configurations: Vacuum Membrane Distillation, Sweeping Gas<br />

Membrane Distillation, Direct Contact Membrane Distillation and Osmotic<br />

Membrane Distillation. The influence of feed temperature and feed flow rate on<br />

the permeate flux and concentration factor for different types of aroma<br />

compounds have been measured for these MD configurations.<br />

A general transport model for the flux of water and aroma compounds have been<br />

derived and compared with the experimental data. A reasonable agreement<br />

between the modelling and the experiments could be obtained. From the<br />

modelling it was possible to explain the large different in permeate flux and<br />

concentration factor that was observed for the different MD configurations. This is<br />

highly related to the heat and mass transfer resistances in the membrane as well<br />

as in the boundary layers adjacent to the membrane surface and how the driving<br />

force develops along the length of the membrane.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!