22.12.2012 Views

Final report for WP4.3: Enhancement of design methods ... - Upwind

Final report for WP4.3: Enhancement of design methods ... - Upwind

Final report for WP4.3: Enhancement of design methods ... - Upwind

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

UPWIND WP4: Offshore Support Structures and Foundations<br />

Table 8.12. These coefficients do not depend on the frequency <strong>of</strong> the incident wave and are computed relatively<br />

to the centre <strong>of</strong> mass <strong>of</strong> the structure. The axi-symmetry <strong>of</strong> the structure implies that the hydrostatic coefficient<br />

in roll (C44) is the same as in pitch (C55). The dimensional values <strong>of</strong> these coefficients can be obtained by multiplying<br />

the non-dimensional values by the density <strong>of</strong> water (ρ) and the gravitational constant (g):<br />

Table 8.12: Non-dimensional hydrostatic coefficients associated with the OC3-Hywind.<br />

Coefficient Value<br />

102<br />

C33<br />

C44, C55<br />

33.183<br />

0.22370E+06<br />

[8-10]<br />

The frequency dependence <strong>of</strong> the response amplitude operator (RAO) <strong>for</strong> the unrestrained motions <strong>of</strong> the OC3-<br />

Hywind plat<strong>for</strong>m is shown in Figure 8.10 <strong>for</strong> incident waves with periods up to 25 s. The freely floating OC3-<br />

Hywind plat<strong>for</strong>m has a resonance period in surge and pitch close to 17 s. For this wave period, the unrestrained<br />

motion amplitude in surge is <strong>of</strong> about 7 times the wave amplitude and in pitch <strong>of</strong> about 0.5rad (~30deg.) per<br />

meter <strong>of</strong> wave amplitude. The unrestrained motions in heave have a maximum <strong>of</strong> about one third <strong>of</strong> the amplitude<br />

<strong>of</strong> the incident wave occurring at a wave period close to 20s.<br />

|X 1 |<br />

|X 3 |<br />

|X 2 |<br />

10<br />

5<br />

0<br />

0 5 10 15 20 25<br />

Wave Period [s]<br />

x 10-7<br />

2<br />

1<br />

0<br />

0 5 10 15 20 25<br />

Wave Period [s]<br />

0.4<br />

0.2<br />

0<br />

0 5 10 15 20 25<br />

Wave Period [s]<br />

Phase X 1 [deg]<br />

Phase X 2 [deg]<br />

Phase X 3 [deg]<br />

200<br />

0<br />

-200<br />

0 5 10 15 20 25<br />

Wave Period [s]<br />

100<br />

0<br />

-100<br />

0 5 10 15 20 25<br />

Wave Period [s]<br />

100<br />

50<br />

0<br />

0 5 10 15 20 25<br />

Wave Period [s]<br />

|X 5 |<br />

|X 6 |<br />

|X 4 |<br />

x 10-8<br />

2<br />

1<br />

0<br />

0 5 10 15 20 25<br />

Wave Period [s]<br />

0.5<br />

0<br />

0 5 10 15 20 25<br />

Wave Period [s]<br />

0.5<br />

x 10-17<br />

1<br />

0<br />

0 5 10 15 20 25<br />

Wave Period [s]<br />

Phase X 4 [deg]<br />

Phase X 5 [deg]<br />

Phase X 6 [deg]<br />

100<br />

0<br />

-100<br />

0 5 10 15 20 25<br />

Wave Period [s]<br />

200<br />

0<br />

-200<br />

0 5 10 15 20 25<br />

Wave Period [s]<br />

91<br />

90<br />

89<br />

0 5 10 15 20 25<br />

Wave Period [s]<br />

Figure 8.10: Frequency dependence <strong>of</strong> the response amplitude operator (RAO) <strong>for</strong> the linear unrestrained motions in<br />

surge (x1), sway (x2), heave (x3), roll (x4), pitch (x5) and yaw (x6) associated with the OC3-Hywind.<br />

Second-order hydrodynamic loads and unrestrained motions <strong>for</strong> monochromatic waves<br />

The second-order solution requires the free-surface to be discretised. An example <strong>of</strong> the mesh associated with<br />

the OC3-Hywind structure used in the present study is shown in Figure 8.11.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!