25.01.2013 Views

Role of the ubiquitin-like modifier FAT10 in protein degradation and ...

Role of the ubiquitin-like modifier FAT10 in protein degradation and ...

Role of the ubiquitin-like modifier FAT10 in protein degradation and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Summary<br />

b<strong>in</strong>d<strong>in</strong>g to <strong>the</strong> proteasome with its UBL doma<strong>in</strong> <strong>and</strong> to <strong>FAT10</strong> with its UBA do-<br />

ma<strong>in</strong>s. Interest<strong>in</strong>gly, <strong>the</strong> <strong>in</strong>teraction <strong>of</strong> <strong>FAT10</strong> with NUB1L is, at least <strong>in</strong> vivo,<br />

strictly dependent on <strong>the</strong> presence <strong>of</strong> all three <strong>of</strong> its UBA doma<strong>in</strong>s. The facilita-<br />

tion <strong>of</strong> <strong>FAT10</strong> <strong>degradation</strong>, on <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, is strictly dependent on <strong>the</strong> abil-<br />

ity <strong>of</strong> NUB1L to <strong>in</strong>teract with <strong>the</strong> 26S proteasome through its UBL doma<strong>in</strong> <strong>and</strong><br />

shows no requirement for any <strong>of</strong> its three UBA doma<strong>in</strong>s. Fur<strong>the</strong>rmore, degrada-<br />

tion <strong>of</strong> <strong>the</strong> N-term<strong>in</strong>al UBL doma<strong>in</strong> <strong>of</strong> <strong>FAT10</strong> – which can <strong>in</strong>teract with <strong>the</strong> 26S<br />

proteasome, but not with NUB1L – can still be accelerated by co-expression <strong>of</strong><br />

NUB1L.<br />

Through experiments us<strong>in</strong>g an <strong>in</strong> vitro system consist<strong>in</strong>g <strong>of</strong> purified 26S protea-<br />

some <strong>and</strong> recomb<strong>in</strong>antly expressed substrates, this <strong>the</strong>sis demonstrates <strong>the</strong> 26S<br />

proteasome to be able to degrade <strong>the</strong> model substrate <strong>FAT10</strong>-dihydr<strong>of</strong>olate reduc-<br />

tase (DHFR) – although only <strong>in</strong> <strong>the</strong> presence <strong>of</strong> NUB1L. Fur<strong>the</strong>rmore, <strong>the</strong> study<br />

<strong>of</strong> <strong>FAT10</strong>-DHFR <strong>degradation</strong> <strong>in</strong> NUB1L knock-down cells revealed this absolute<br />

requirement for NUB1L to also apply to <strong>in</strong> vivo situations, suggest<strong>in</strong>g that – at<br />

least <strong>in</strong> <strong>the</strong> case <strong>of</strong> this model substrate – mere b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> <strong>FAT10</strong> to <strong>the</strong> protea-<br />

some is not sufficient to ensure <strong>the</strong> <strong>degradation</strong> <strong>of</strong> its target prote<strong>in</strong>s.<br />

Ano<strong>the</strong>r non-covalent <strong>in</strong>teraction partner <strong>of</strong> <strong>FAT10</strong>, histone deacetylase 6<br />

(HDAC6), was also identified through a yeast two-hybrid screen. HDAC6, which<br />

is a primarily cytoplasmatic prote<strong>in</strong>, is <strong>in</strong>volved <strong>in</strong> <strong>the</strong> deactylation <strong>of</strong> α-tubul<strong>in</strong>,<br />

HSP90 <strong>and</strong> cortact<strong>in</strong>. In addition to its two deacetylase doma<strong>in</strong>s, it also encom-<br />

passes a dyne<strong>in</strong>-b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> as well as a ubiquitn-b<strong>in</strong>d<strong>in</strong>g z<strong>in</strong>c f<strong>in</strong>ger (BUZ<br />

doma<strong>in</strong>) <strong>and</strong> te<strong>the</strong>rs polyubiquitylated prote<strong>in</strong>s to <strong>the</strong> dyne<strong>in</strong>-motor dur<strong>in</strong>g <strong>the</strong>ir<br />

microtubule-dependent transport to <strong>the</strong> aggresome. The here<strong>in</strong> presented results<br />

uncover a role for HDAC6 not only <strong>in</strong> <strong>the</strong> transport <strong>of</strong> polyubiquitylated cargo,<br />

but also <strong>in</strong> <strong>the</strong> transport <strong>of</strong> <strong>the</strong> <strong>ubiquit<strong>in</strong></strong>-<strong>like</strong> <strong>modifier</strong> <strong>FAT10</strong> <strong>and</strong> its conjugates.<br />

Under conditions <strong>of</strong> misfolded prote<strong>in</strong> stress <strong>FAT10</strong> <strong>in</strong>teracts with HDAC6 <strong>and</strong><br />

localizes to <strong>the</strong> aggresome <strong>in</strong> a microtubule-dependent manner. The b<strong>in</strong>d<strong>in</strong>g <strong>of</strong><br />

<strong>FAT10</strong> is mediated by two different doma<strong>in</strong>s <strong>of</strong> HDAC6, <strong>the</strong> BUZ doma<strong>in</strong> <strong>and</strong><br />

surpris<strong>in</strong>gly also <strong>the</strong> first catalytic doma<strong>in</strong>, but it is not dependent on <strong>the</strong> cat-<br />

alytic activity <strong>of</strong> HDAC6. Fur<strong>the</strong>rmore, this <strong>the</strong>sis showed <strong>FAT10</strong>-conta<strong>in</strong><strong>in</strong>g as<br />

well as <strong>ubiquit<strong>in</strong></strong>-conta<strong>in</strong><strong>in</strong>g aggresomes to be reduced <strong>in</strong> both size <strong>and</strong> number<br />

<strong>in</strong> HDAC6 deficient fibroblasts, which suggests that, although HDAC6 plays an<br />

important role <strong>in</strong> aggresomal target<strong>in</strong>g, it is not essential for <strong>the</strong> transport <strong>of</strong><br />

proteasomal substrates to <strong>the</strong> aggresome.<br />

5

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!