07.02.2013 Views

Brain Development: Normal Processes and the Effects of Alcohol ...

Brain Development: Normal Processes and the Effects of Alcohol ...

Brain Development: Normal Processes and the Effects of Alcohol ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

where R is a protein <strong>and</strong> Ma n i s anchored t o Ser/Thr<br />

residues (Takahashi et al., 2001; Yoshida et al, 2001).<br />

The function s <strong>of</strong> POMTT, fukutin, an d Large , gen e<br />

products o f POMTI, FCMD , an d Large, hav e no t<br />

been determined . Bioinformatic s studies , however ,<br />

show that eac h protei n ha s a glycosyltransferase-lik e<br />

domain (Aravin d an d Koonin , 1999 ; Jurad o e t al. ,<br />

1999; Peyrar d e t al. , 1999 ; Beltran-Valer o e t al ,<br />

2002). The implicatio n is that <strong>the</strong> dystrophies <strong>and</strong> migration<br />

defects result from abnormal protein glycosylation.<br />

How can protein glycosylatio n enzymes regulate<br />

neuronal migration?<br />

Conceivably, migration involves glycosylation substrate<br />

proteins. A c<strong>and</strong>idate substrate is a-dystroglycan,<br />

a heavily glycosylated membrane protein . The mucin -<br />

like domain o f a-dystroglycan is heavily substituted b y<br />

O-linked mannosy l glycan s tha t contain th e linkag e<br />

catalyzed b y POMGnTl (Chib a e t al, 1997) . Th e<br />

O-mannosyl glycans may play important role s in me -<br />

diating a-dystroglyca n interaction s with lamini n (Ervasti<br />

<strong>and</strong> Campbell, 1993 ; Smalheiser, 1993), a major<br />

component o f th e basemen t membrane . Fur<strong>the</strong>r ,<br />

a-dystroglycan i n som e o f <strong>the</strong>se disease s is underglycosylated<br />

<strong>and</strong> binding to laminin is reduced (Hayash i<br />

et aì., 2001; Holzfeind et al, 2002; Kano et al, 2002;<br />

Michele et al., 2002). These results suggest a connection<br />

between hypoglycosylatio n <strong>of</strong> a-dystroglycan an d<br />

neuronal migratio n defect s i n th e brain . A n impor -<br />

tant role for a-dystroglycan i n this process is also supported<br />

b y finding s o f neurona l migratio n defect s i n<br />

<strong>the</strong> brains <strong>of</strong> mice in which dystroglyean is conditionally<br />

knocked out (Michel e et al., 2002; Moore e t al.,<br />

2002).<br />

Mechanisms o f overmigration may involve abrogation<br />

o f th e PM . Th e P M i s compose d mainl y o f<br />

laminin, collage n IV , nidogen, an d perlecan , al l o f<br />

which regulat e cel l proliferation , migration , an d differentiation<br />

b y interactin g wit h mainl y tw o cell sur -<br />

face receptors: integrilis <strong>and</strong> a-dystroglycan. Th e PM ,<br />

to which radia l glia l endfee t ar e attached , i s locate d<br />

between th e pia mater an d <strong>the</strong> MZ . Electro n micro -<br />

scopic analyse s show breaches i n th e P M a t site s <strong>of</strong><br />

ectopie neura l cluster s o f patient s wit h FCM D<br />

(Nakano e t al. , 1996 ; Ishi i e t al, 1997 ; Sait o e t al. ,<br />

1999). Laminin i s reduced or abnormally distribute d<br />

in <strong>the</strong> brai n surfac e PM o f several mutant mice wit h<br />

overmigration, includin g Lmxl a (Dreher) mic e<br />

(Sekiguchi et al, 1994 ^ Costa et al, 2001 ) <strong>and</strong> mic e<br />

lacking rnyristolate d alanine-rich C kinas e substrat e<br />

(Blackshear e t al , 1997) , integri n a 6 (Georges -<br />

NEURONAL MIGRATION 3 5<br />

Labouesse et al, 1998) , an d integri n p] (Graus-Port a<br />

et al , 2001) . Interestingly , integrili (3 j nul l neuron s<br />

migrate to appropriate positions in <strong>the</strong> cerebral cortex<br />

in chimeri c mic e (Fassle r <strong>and</strong> Meyer , 1995) , imply -<br />

ing tha t overmigratio n i s not cause d b y a n intrinsi c<br />

defect <strong>of</strong> <strong>the</strong> migrating neurons but b y a defective environment<br />

i n thi s mutant . Whe<strong>the</strong> r breache s i n th e<br />

PM ar e th e caus e o r th e resul t o f overmigration re -<br />

mains to be clarified.<br />

DIRECTIONAL GUIDANCE OF<br />

NEURONAL MIGRATIO N BY<br />

DIFFUSABLE FACTORS<br />

LCNs o f th e olfactor y bul b (granul e cell s an d<br />

periglomerular cells ) ar e mainl y generate d postna -<br />

tally, during th e first 2 to 3 weeks after birt h (Altma n<br />

<strong>and</strong> Das , 1966 ; Hinds , 1968) , althoug h som e neu -<br />

ronogenesis continue s i n th e adul t (Corott o e t al ,<br />

1993; Loi s an d Alvarey-Buvlla , 1994) . Retroviral -<br />

labeling studies demonstrate tha t mos t o f <strong>the</strong> LCN s<br />

are generate d i n th e S Z nea r th e anterio r forebrai n<br />

(SZa) an d migrat e t o th e olfactor y bulb throug h a n<br />

SZ pathway (Fig . 3-3 ) (Luskin , 1993 ; Zigova e t al ,<br />

1996). Apparently , olfactory LCNs do not migrate o n<br />

radially oriented glia l processes, a s <strong>the</strong> orientatio n o f<br />

<strong>the</strong> radia l glia l fiber s i s orthogona l t o th e migratio n<br />

trajectory (Kish i e t al, 1990) . Fur<strong>the</strong>r , th e migratio n<br />

pathway i n th e S Z i s also devoid o f axon projections<br />

(Kishi, 1987) .<br />

How d o olfactor y LC N migrate ? Immunohisto -<br />

chemical studie s o f polysialic acid an d Tu J 1 expression<br />

i n th e adul t S Z pathwa y sho w tha t migratin g<br />

cells tend to travel in chains or streams <strong>of</strong> cells (Rousselot<br />

et al, 1995 ; Doetsc h an d Alvarez-Buylla, 1996 ;<br />

Jankovski <strong>and</strong> Sotelo, 1996 ; Loi s et al, 1996 ; Doetsc h<br />

et al , 1997 ; Garcia-Verdug o e t al, 1998) . Althoug h<br />

<strong>the</strong>se chain s <strong>of</strong> migrating cells cannot b e observe d in<br />

newborn animals because man y cells are migrating at<br />

<strong>the</strong> same time, such chains are <strong>of</strong>ten observed in cul -<br />

tures <strong>of</strong> SZ cell s plate d on collage n gel s (H u et al,<br />

1996) or Matrigel (Wichterle et al, 1997) . Therefore ,<br />

chain migration <strong>of</strong> olfactory LCN precursor s seems to<br />

be mechanistically distinc t fro m radia l migration relying<br />

on radial glia.<br />

In vivo studies show that olfactory LCN precursor s<br />

migrate fro m th e SZ a to <strong>the</strong> olfactory bulb in a unidirectional<br />

manner (Luskin , 1993; Hu <strong>and</strong> Rutishauser,<br />

1996). Thi s findin g implie s a n activ e guidanc e

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!