07.02.2013 Views

Brain Development: Normal Processes and the Effects of Alcohol ...

Brain Development: Normal Processes and the Effects of Alcohol ...

Brain Development: Normal Processes and the Effects of Alcohol ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

166 ETHANOL-AFFECTE D DEVELOPMENT<br />

time, splenic T cells have adult levels <strong>of</strong> expression <strong>of</strong><br />

CD3, CD4 , an d CDS <strong>and</strong> are able to respond to mitogens<br />

(Ka y et al., 1970) , an d spleni c accessor y cells<br />

are full y functiona l i n deliverin g co-stimulatory signals<br />

(Hol t an d Jones , 2000). Fetuse s stil l hav e fewe r<br />

memory T cells than adults do at this time (Hol t <strong>and</strong><br />

Jones, 2000). Yolk sack-derived pro- B cells develop in<br />

<strong>the</strong> liver <strong>and</strong> acquire surface immunoglobulin (Ig ) M,<br />

IgD, <strong>and</strong> CD2 0 expression by 10-13 weeks <strong>of</strong> gestation<br />

(H<strong>of</strong>ma n et al., 1984) . B cells ar e detectabl e i n<br />

lymph node s fro m 16-1 7 weeks, in splee n a t 16-2 1<br />

weeks, an d ar e abundant i n bon e marro w at 16-2 0<br />

weeks <strong>of</strong> gestation (West , 2002).<br />

The structur e <strong>of</strong> <strong>the</strong> thymus develops as a result <strong>of</strong><br />

epi<strong>the</strong>liomesenchymal interactions. Endoderm <strong>of</strong> <strong>the</strong><br />

third pharyngeal pouch differentiate s int o thymic epi<strong>the</strong>lium.<br />

Neural crest cells <strong>the</strong>n migrat e through th e<br />

branchial arche s an d becom e th e mesenchym e tha t<br />

will form <strong>the</strong> layers around <strong>the</strong> epi<strong>the</strong>lial primordium<br />

<strong>of</strong> <strong>the</strong> thymus <strong>and</strong> <strong>the</strong> connective tissue framework. T<br />

cell progenitor s arriv e in th e thymu s fro m th e live r<br />

during <strong>the</strong> ninth wee k <strong>of</strong> gestation, an d th e structur e<br />

<strong>of</strong> th e thymu s differentiate s int o a corte x an d a<br />

medulla at 10-1 2 week s (West, 2002). Prothymocytes<br />

express CD 7 i n th e feta l live r at 7 week s <strong>and</strong> CD 3<br />

at 8- 9 week s <strong>of</strong> gestation, whe n <strong>the</strong>s e cell s migrat e<br />

to <strong>the</strong> thymus (Holt <strong>and</strong> Jones, 2000). Gene rearrangement<br />

start s a t aroun d wee k 11 , an d expressio n o f<br />

<strong>the</strong> T cel l receptor s (TCR) , CD4 , an d CD 8 fol -<br />

lows. Thymi c "education " o f immature CD4 + /CD8 +<br />

(double-positive) T cell s take s plac e i n th e secon d<br />

trimester b y positiv e selection , wit h th e abilit y o f<br />

TCR t o bin d t o polymorphi c part s o f nonagonis t<br />

MHC-encoded molecules on nonlymphoid cells, <strong>and</strong><br />

by negativ e selectio n <strong>of</strong> TCR, wit h hig h affinit y to<br />

self-antigens t o avoi d autoimmunit y (vo n Boehme r<br />

et al, 2003). Export <strong>of</strong> mature CD4+ or CD8+ (single<br />

positive) cell s begin s afte r wee k 13 , <strong>and</strong> a rapi d expansion<br />

o f <strong>the</strong> T cel l poo l happen s durin g 14-1 6<br />

weeks (Kay et al., 1970 ; Berr y et al, 1992) . At 13-14<br />

weeks, thymocytes acquire proliferative ability to most<br />

mitogens. During <strong>the</strong> second trimester , susceptibility<br />

to environmenta l factor s cause s disruptio n o f th e<br />

thymic educatio n processe s an d cel l proliferation ,<br />

leading to a defective T cell repertoire.<br />

As roden t gestatio n (~ 3 weeks ) i s substantially<br />

shorter tha n tha t o f humans (~4 0 weeks) , immun e<br />

system developmen t o f newbor n ra t an d mous e<br />

pups occurs at a time equivalent to <strong>the</strong> end <strong>of</strong> <strong>the</strong> sec -<br />

ond trimeste r i n human s (Zaja c an d Abel , 1992) .<br />

Therefore, studie s i n roden t model s o f prenata l<br />

ethanol exposur e have focused primarily on <strong>the</strong> early<br />

events in ontogeny <strong>of</strong> <strong>the</strong> immune system, i.e., during<br />

<strong>the</strong> late gestational period <strong>and</strong> early postnatal life .<br />

Impaired Immunit y following Prenatal<br />

Exposure to Ethanol<br />

Children prenatall y expose d t o alcoho l hav e a n in -<br />

creased incidenc e o f bacteria l infections , suc h a s<br />

meningitis, pneumonia , recurren t otiti s media , gas -<br />

troenteritis, sepsis , urinar y tract infections , an d fre -<br />

quent uppe r respirator y trac t infection s (Johnso n<br />

et al, 1981 ; Churc h an d Gerkin, 1988) . These children<br />

als o have lower cell count s o f eosinophils <strong>and</strong><br />

neutrophils, decrease d circulatin g E-rosette-formin g<br />

lymphocytes, reduce d mitogen-stimulate d prolifera -<br />

tive response s b y periphera l bloo d leukocytes , an d<br />

hypo-y-globulinemia (Johnson et al., 1981).<br />

Research usin g animal model s t o investigat e im -<br />

mune function <strong>of</strong> FEE <strong>of</strong>fsprin g has (a) substantiated<br />

<strong>the</strong> clinica l evidenc e o f impaire d immunit y associ -<br />

ated wit h FASD <strong>and</strong> (b ) greatly increased ou r under -<br />

st<strong>and</strong>ing <strong>of</strong> <strong>the</strong>se immune deficits in terms <strong>of</strong> both th e<br />

spectrum <strong>of</strong> effects i n differen t orga n systems <strong>and</strong> th e<br />

mechanisms mediatin g th e immunoteratogeni c ef -<br />

fects o f ethanol . Deficit s i n innat e immunit y hav e<br />

typically no t bee n observe d i n anima l studies . Fo r<br />

example, on e larg e stud y o n nonhuma n primate s<br />

(Macaco, nemestrina) show s that i n uter o ethano l ex -<br />

posure doe s not result in significant differences i n total<br />

numbers <strong>of</strong> white blood cells, leukocyte subsets, or<br />

monocyte phagocyti c activit y compare d t o tha t i n<br />

control subjects (Grossmann et al., 1993). In contrast,<br />

marked deficit s in adaptiv e immunity involving both<br />

cell-mediated an d humora l immunit y ar e eviden t<br />

in FE E animals . Fur<strong>the</strong>rmore , a s describe d i n th e<br />

discussion below , a marke d sexua l dimorphis m i n<br />

ethanol effect s ha s been observed , wit h <strong>the</strong> majorit y<br />

<strong>of</strong> deficits occurring in male <strong>of</strong>fspring .<br />

Deficits i n Adaptive Immunit y<br />

Inborn errors <strong>of</strong> immunocompetent cells in children<br />

with FASD result in immunodefiency disorders or increased<br />

susceptibilit y to infections. Recurrent opportunistic<br />

infection <strong>and</strong> infectio n caused b y ubiquitous<br />

microorganisms, such a s bacteria, viruses , <strong>and</strong> fungi ,<br />

typically occu r wit h deficit s in cell-mediate d immu -<br />

nity, wherea s deficit s i n B cells , immunoglobulins ,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!