07.02.2013 Views

Brain Development: Normal Processes and the Effects of Alcohol ...

Brain Development: Normal Processes and the Effects of Alcohol ...

Brain Development: Normal Processes and the Effects of Alcohol ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

48 NORMA L DEVELOPMENT<br />

a smal l GTPas e tha t i s a Ra s famil y membe r<br />

(Schwamborn <strong>and</strong> Puschel, 2004). The dat a indicate<br />

that Ra p IB i s upstrea m o f bot h th e Pa r comple x<br />

<strong>and</strong> Cdc4 2 wit h respec t t o axo n specificatio n<br />

(Schwamborn an d Puschel , 2004) . I t is thought tha t<br />

extracellular factors, a s yet unidentified, might medi -<br />

ate th e effect s o f <strong>the</strong> loca l environmen t on polariza -<br />

tion b y acting upstrea m fro m intracellula r signaling<br />

molecules such as Rho, Par, <strong>and</strong> Rap IB.<br />

Polarized Distribution <strong>of</strong><br />

Proteins an d Organelles<br />

The difference s i n morphology <strong>and</strong> function that distinguish<br />

axons <strong>and</strong> dendrites reflect different comple -<br />

ments o f protein s an d organelle s i n eac h typ e o f<br />

neurite. In <strong>the</strong> adult brain, certain proteins have a polarized<br />

distribution , meanin g tha t <strong>the</strong> y ar e concen -<br />

trated or even exclusively present in ei<strong>the</strong>r dendrites or<br />

axons. This asymmetr y must be created durin g development<br />

b y compartment-specifi c traffickin g an d re -<br />

tention o f <strong>the</strong>s e proteins . Th e Stag e 2 neurit e tha t<br />

becomes <strong>the</strong> axo n in Stag e 3 typically receives more<br />

organelles, cytosoli c proteins, <strong>and</strong> Golgi-derive d vesi -<br />

cles than <strong>the</strong> processes that become dendrites (Bradke<br />

<strong>and</strong> Dotti , 1997) . Intac t trafficking i s required for polarization,<br />

as it is possible to prevent axon specification<br />

by blockin g th e traffickin g o f Golgi-derive d vesicle s<br />

with brefeldin A (Jareb <strong>and</strong> Banker, 1997). The polar -<br />

ized distribution <strong>of</strong> some proteins may ei<strong>the</strong>r promote<br />

<strong>the</strong> emergin g difference s betwee n developin g axon s<br />

<strong>and</strong> dendrites or simply reflect thos e differences . Th e<br />

details o f how eac h polarize d protei n reache s it s appropriate<br />

destination in one compartment bu t not <strong>the</strong><br />

o<strong>the</strong>r remain largely speculative.<br />

The polarizatio n <strong>of</strong> proteins ma y resul t from re -<br />

tention specifi c t o <strong>the</strong> appropriat e compartment. Experiments<br />

with optical tweezers, which allow traction<br />

force t o b e applie d t o specifi c proteins, sho w that a<br />

barrier t o th e diffusio n o f some axon-specifi c mem -<br />

brane protein s exist s a t th e axo n initia l segmen t<br />

(Winckler et al, 1999; Fâche et al, 2004). The barrier<br />

appears to be an accumulation <strong>of</strong> actin-te<strong>the</strong>red mem -<br />

brane proteins . Analysis <strong>of</strong> phospholipid diffusio n i n<br />

<strong>the</strong> membrane suggests that <strong>the</strong> diffusio n barrie r does<br />

not exis t prio r t o axo n specificatio n (Nakad a e t al. ,<br />

2003), but it may play an important role in subsequent<br />

maturation. The exten t to which <strong>the</strong> diffusio n barrie r<br />

is a cause or consequent <strong>of</strong> <strong>the</strong> establishmen t <strong>of</strong> neuronal<br />

polarity remains unknown.<br />

NEURITE MOTILITY<br />

The neuroanatomis t Santiag o Ramon y Cajal (1894 )<br />

observed tha t th e dista l exten t o f a growin g neurit e<br />

"end[s] in a spherical conical swelling . .. with a large<br />

number o f thick protrusions <strong>and</strong> lamella r processes, "<br />

which he speculated wer e like "an amoebic mas s that<br />

acts as a battering ram to spread <strong>the</strong> elements along its<br />

path." H e name d thi s morphologica l specializatio n<br />

<strong>the</strong> growth cone, <strong>and</strong> decade s <strong>of</strong> subsequent research<br />

have supporte d hi s inferenc e that growt h cone s ar e<br />

highly motile structures required for <strong>the</strong> elongation <strong>of</strong><br />

both axon s <strong>and</strong> dendrites . Much i s known about th e<br />

structure <strong>and</strong> functio n <strong>of</strong> growth cones . The motilit y<br />

<strong>of</strong> growth cone s depend s o n acti n an d microtubule s<br />

<strong>and</strong> th e protein s tha t regulat e <strong>the</strong>m . Additionally ,<br />

growth cone s ar e th e sensor y organs for extracellular<br />

cues that guide axons to engage in <strong>the</strong> directed growth<br />

required for <strong>the</strong> establishmen t <strong>of</strong> correct connectivity.<br />

Though muc h wor k remains t o be done , a n under -<br />

st<strong>and</strong>ing o f ho w growt h cone s functio n i n neurit e<br />

growth is emerging.<br />

Growth Cone Structur e<br />

Although neuronal growth cones vary considerably in<br />

shape an d size , <strong>the</strong> y generall y share som e commo n<br />

structural features. Most investigators recognize thre e<br />

morphological zone s know n a s th e central , transi -<br />

tional, an d periphera l domains, which are indicate d<br />

in Figur e 4- 2 (Forsche r <strong>and</strong> Smith , 1988 ; Bridgman<br />

<strong>and</strong> Dailey , 1989) . Th e relativel y thick centra l do -<br />

main abut s th e neurit e an d i s enriched wit h micro -<br />

tubules. The transitional domain, which lies between<br />

<strong>the</strong> centra l an d periphera l domains , contain s mesh -<br />

work, arcs , <strong>and</strong> radia l ridge s o f F-actin. Th e periph -<br />

eral domai n consist s o f <strong>the</strong> lamellipodium , a wide,<br />

flat region, <strong>and</strong> filopodia, which ar e fine membrane<br />

protrusions tha t exten d distall y fro m th e lamel -<br />

lipodium. The periphera l domain i s greatly enriched<br />

with F-actin, organized a s meshwork <strong>and</strong> arc s in th e<br />

lamellipodia. Filopodia contai n bundles <strong>of</strong> filaments<br />

with th e barbe d ends pointing distally. Compared t o<br />

<strong>the</strong> centra l domain , th e periphera l domai n ha s a<br />

lower densit y o f microtubule s an d <strong>the</strong> y ar e notabl y<br />

more dynami c (Schaefe r e t al, , 2002) . The leadin g<br />

edge o f migrating fibroblasts was thought t o hav e a<br />

structure similar to that <strong>of</strong> <strong>the</strong> neuronal growth cone.<br />

Recent findings, however, show that <strong>the</strong> cytoskeletal<br />

configuration an d mechanic s <strong>of</strong> motility in <strong>the</strong>se two

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!