07.02.2013 Views

Brain Development: Normal Processes and the Effects of Alcohol ...

Brain Development: Normal Processes and the Effects of Alcohol ...

Brain Development: Normal Processes and the Effects of Alcohol ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

96 NORMA L DEVELOPMENT<br />

where i t ha s transcriptiona l activities . p53-regulate d<br />

genes critica l for normal brain development includ e<br />

cell cycl e proteins p21 <strong>and</strong> murine double minut e 2 ,<br />

<strong>the</strong> DN A repai r protei n growt h arres t an d DN A<br />

damage-inducible gene 45 , <strong>and</strong> th e apoptosis-related<br />

proteins insulin-lik e growth facto r binding protei n 3<br />

<strong>and</strong> Ba x (Levine , 1997) . I n addition , p5 3 regulate s<br />

<strong>the</strong> Fa s receptor (Somasundaram, 2000) <strong>and</strong> th e hormone<br />

polyadenylat e cyclase-activatin g polypeptid e<br />

receptor 1 (e.g., Cian i e t al, 1999 ; Johnson , 2001)<br />

(see Chapters 1 5 <strong>and</strong> 16) .<br />

p53 can play a direct role in cell death by interacting<br />

wit h th e Be l famil y o f protein s (Chipu k e t al. ,<br />

2003, 2004 ; Mihar a e t al , 2003) , APAF-1 , an d<br />

apoptosis-related receptors . Thes e interaction s ar e<br />

pro-apoptotic. p5 3 down-regulate s pro-survival Bcl-2<br />

<strong>and</strong> Bcl-x , <strong>and</strong> up-regulate s Bax, Bid, <strong>and</strong> APAF-1 . It<br />

also up-regulate s TRAIL-R2/DR5 , Fas , an d FasL . I n<br />

addition, p53 represses c-Fos (Kle y et al, 1992) , thus<br />

potentially interferin g with activato r protei n 1 <strong>and</strong> ,<br />

hence, transcription.<br />

Oxidative Stress<br />

Oxygen, thoug h centra l t o life , ca n b e toxic . I n it s<br />

ground state, it possesses two unpaired electron s with<br />

parallel spin states. This setting makes a two-electron<br />

reduction kineticall y unlikely ; however , sequentia l<br />

one-electron reduction s can occur, hence generating<br />

oxygen fre e radicals , reactive oxyge n specie s (ROS) .<br />

In th e biologica l setting , th e initia l one-electron ex -<br />

change generate s th e superoxid e anio n radical . Th e<br />

protonated two-electro n reductio n produce s H 2O2<br />

(<strong>the</strong> protonated for m o f <strong>the</strong> peroxide ion), with <strong>the</strong> final<br />

protonate d four-electro n produc t bein g water .<br />

The oxyge n radicals resulting from thi s process generate<br />

a plethor a o f reactiv e specie s wit h o<strong>the</strong> r mole -<br />

cules, suc h a s nitroge n an d iron , al l o f which ca n<br />

produce a pro-oxidan t environment i n cells , termed<br />

oxidative stress.<br />

The centra l role s for ROS in apoptosis, both as initiators<br />

an d a s signalin g event s withi n th e apoptoti c<br />

process, ar e wel l documente d (Curti n e t al. , 2002 ;<br />

Fleury e t al , 2002 ; Polste r an d Fisku m 2004) . Although<br />

<strong>the</strong> specific mechanism s by which ROS elicit<br />

<strong>and</strong>/or maintai n apoptosi s remai n undefined , <strong>the</strong>s e<br />

compounds hav e a n effec t o n a variet y o f cellula r<br />

components: proteins , DN A base s <strong>and</strong> sugars , polysaccharides,<br />

an d lipids . On e ROS-relate d pathwa y<br />

that has been connecte d t o ethanol-mediated neuro n<br />

apoptosis i s th e productio n o f pro-apoptoti c prod -<br />

ucts o f lipi d peroxidatio n withi n mitochondria (Ra -<br />

mach<strong>and</strong>ran e t al , 2001 , 2003) . RO S reac t wit h<br />

unsaturated fatt y acids , initiatin g a self-perpetuatin g<br />

peroxidation o f membrane lipid s (Kappus , 1985) . In<br />

addition t o direc t damag e t o biomembranes , thi s<br />

ubiquitous proces s generate s highl y reactive aldehydes,<br />

th e mos t studie d an d th e mos t toxi c bein g 4 -<br />

hydroxynonenal (HNE ) (Esterbaue r e t al , 1990 ;<br />

Uchida e t al, 1993) . Importantly , HN E formatio n<br />

generates apoptotic death o f neurons, <strong>and</strong> it s production,<br />

secondar y t o oxidativ e stress , ha s bee n com -<br />

pellingly linke d t o neuro n deat h i n a variet y o f<br />

neurodegenerative diseases (Zarkovic, 2003).<br />

APOPTOTIC PATHWAY S<br />

Caspase-Dependent: Intrinsic vs.<br />

Extrinsic Pathways <strong>of</strong> Apoptosi s<br />

The pathway s <strong>of</strong> apoptosis can be divided into intrinsic<br />

an d extrinsi c on th e basi s <strong>of</strong> activation site (Budi -<br />

hardjo e t al , 1999 ; Shiozak i an d Shi , 2004) . Th e<br />

intrinsic, mitochondria-associate d pathwa y depend s<br />

on Bel proteins. The extrinsi c pathway is mediated by<br />

activation o f an apoptosis-relate d receptor. Th e path -<br />

ways ar e no t trul y independent , a s <strong>the</strong>r e i s muc h<br />

cross-talk, <strong>and</strong> both can activate caspas e 3 (Fig. 6-1) .<br />

In addition, activation <strong>of</strong> <strong>the</strong> extrinsic pathway can activate<br />

a feedback loop to <strong>the</strong> intrinsic pathway.<br />

Intrinsic Pathways<br />

The fundamenta l featur e o f <strong>the</strong> intrinsi c pathwa y i s<br />

<strong>the</strong> releas e o f pro-apoptoti c compound s fro m mito -<br />

chondria. Thi s pathwa y i s activated b y intracellula r<br />

stress signal s includin g bu t no t limite d t o oxidativ e<br />

stress or DNA damage. Thus, major effector s ma y be<br />

ROS<strong>and</strong>p53.<br />

Mitochondrial permeabilit y i s affected b y <strong>the</strong> Be l<br />

family o f proteins . Ba x homodimer s allo w io n flu x<br />

through th e mitochondrial membrane , an d this some -<br />

how allow s movemen t o f cytochrom e C , possibl y<br />

through enlargement <strong>of</strong> <strong>the</strong> voltage-dependent anio n<br />

channels (Banerje e an d Ghosh , 2004 ) o r by opening<br />

<strong>the</strong> mitochondria l permeabilit y transition por e (e.g. ,<br />

Marzo et al., 1998) . Breach <strong>of</strong> <strong>the</strong> membrane cause s a<br />

loss <strong>of</strong> membrane potentia l <strong>and</strong> release <strong>of</strong> cytochrome c,<br />

AIF, HtrA2/Omi, <strong>and</strong>/or second mitochondria-derive d

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!