07.02.2013 Views

Brain Development: Normal Processes and the Effects of Alcohol ...

Brain Development: Normal Processes and the Effects of Alcohol ...

Brain Development: Normal Processes and the Effects of Alcohol ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

92 NORMA L DEVELOPMENT<br />

(b) axon s reac h th e wron g plac e withi n th e targe t<br />

area, (c ) axons project t o <strong>the</strong> wron g target , (d ) <strong>the</strong>r e<br />

are simply too many axons terminating within <strong>the</strong> target,<br />

or (e) no target exists. One exampl e o f <strong>the</strong> latter is<br />

<strong>the</strong> damage d trigeminal-somatosensor y system ; tran -<br />

section o f <strong>the</strong> infraorbita l nerv e causes a los s <strong>of</strong> neurons<br />

i n th e trigemina l brai n ste m nucle i an d th e<br />

ventrobasal nucleu s o f th e thalamu s (Klei n e t al. ,<br />

1988; Mille r e t al., 1991 ; Wait e e t al. , 1992 ; Miller ,<br />

1999; Sugimot o et al., 1999 ; Baldi et al., 2000).<br />

It is important to note that programmed neurona l<br />

death i s a phenomenon mainl y confined to developing<br />

invertebrates . As <strong>the</strong> ter m implies , neuron s ca n<br />

die a s a consequence o f a genetic program. The bes t<br />

examples are provided by Caenorhabditis elegans (see<br />

Apoptosis, below). Thus, programmed cell death must<br />

be distinguishe d fro m naturall y occurrin g neurona l<br />

death, whic h principall y represents target-dependen t<br />

neuronal death .<br />

Many developin g neuron s di e soon afte r <strong>the</strong> y ar e<br />

generated (se e Chapter 5) , perhaps a s a consequence<br />

<strong>of</strong> an error in DNA replication. Thi s adaptive mechanism<br />

allows an organism t o protect itsel f from basin g<br />

its circuitr y on a cadr e o f neurons wit h mutate d o r<br />

damaged DNA .<br />

EXPERIMENTAL MODEL SYSTEMS<br />

This chapte r consider s in vitro <strong>and</strong> i n viv o studies <strong>of</strong><br />

neuronal death. Eac h experimenta l approac h ha s its<br />

own advantages <strong>and</strong> limitations. A major advantage <strong>of</strong><br />

in vitr o studie s is that a homogeneou s populatio n o f<br />

cells i s addressed . Thi s settin g i s crucia l t o studie s<br />

<strong>of</strong> <strong>the</strong> induction <strong>of</strong> neuronal death by xenobiotics, because<br />

cells within <strong>the</strong> brain differ widel y in <strong>the</strong>ir susceptibility<br />

(Watts et al., 2005). Additionally, <strong>the</strong> entir e<br />

population is likely to respond t o a manipulation i n a<br />

similar manne r an d develo p synchronously . Thi s<br />

means that small changes in transcript <strong>and</strong> protein expression<br />

o r post-translational modification s ar e mor e<br />

likely to be detectable. Disadvantage s t o this method<br />

are tha t cultur e condition s ca n influenc e th e path -<br />

way^) activated , an d th e model ma y not b e physio -<br />

logically relevant . I n contrast , i n vivo studie s us e a<br />

highly heterogenous syste m in which <strong>the</strong>r e ar e mul -<br />

tiple cel l type s i n divers e developmenta l stage s a t<br />

a give n time . Thi s tempora l asynchron y make s i t<br />

harder to differentiate transcrip t <strong>and</strong> protei n change s<br />

from a background <strong>of</strong> ontogenetic noise . In addition,<br />

changes tha t ar e see n ma y be difficul t o r impossibl e<br />

to interpret . O f course , th e majo r advantag e t o thi s<br />

method i s that it is <strong>the</strong> more physiologically <strong>and</strong> clini -<br />

cally relevant model .<br />

Direct evidenc e o f neurona l deat h i s difficult t o<br />

amass because th e degenerativ e process ca n be rapid<br />

<strong>and</strong> <strong>the</strong> debris can be removed quickly (Reddien <strong>and</strong><br />

Horvitz, 2004) . Thus, cells can expres s death-related<br />

proteins (e.g. , activ e caspas e 3 an d bax ) for a lon g<br />

time befor e <strong>the</strong> y di e (e.g. , Chen g an d Zochodne ,<br />

2003), <strong>and</strong> no t al l cells rely on caspas e as an effecto r<br />

<strong>of</strong> cell deat h (se e Caspase-Independen t Cel l Death ,<br />

below). Ano<strong>the</strong> r widel y used metho d o f identifyin g<br />

dying cell s i s termina l deoxynucleotidy l transferas e<br />

mediated deoxyuridin e nic k end labelin g (TUNEL) ,<br />

in which free , adenylate d ends <strong>of</strong> degenerating DN A<br />

are labeled . Unfortunately , TUNE L ca n generat e<br />

false positive results; in at least one mode l syste m <strong>the</strong><br />

amount o f TUNEL exceeds cel l los s (Gordo n e t al.,<br />

2002).<br />

The onl y incontrovertible proo f <strong>of</strong> neuronal deat h<br />

is documentation o f a decrease i n neuronal number s<br />

in a longitudinal, population-base d study . Final neu -<br />

ronal numbers ar e a function <strong>of</strong> three developmenta l<br />

events: generation, migration , <strong>and</strong> death. A study performed<br />

at a single time-point in a mature animal cannot<br />

determin e th e relativ e contribution s o f <strong>the</strong>s e<br />

developmental events . A s a resul t o f th e potentia l<br />

<strong>of</strong> generatin g fals e positiv e results , a ma<strong>the</strong>matica l<br />

method wa s devised to determine <strong>the</strong> number s <strong>of</strong> dying<br />

neuron s (Miller , 2003). The grea t advantag e <strong>of</strong><br />

this approac h i s that th e estimat e o f cell deat h de -<br />

pends on <strong>the</strong> documented cel l numbers <strong>and</strong> <strong>the</strong> proliferative<br />

activity <strong>of</strong> <strong>the</strong> population .<br />

MODES O F CELL DEAT H<br />

The mode s o f cell deat h includ e apoptosis , necrosis ,<br />

<strong>and</strong> autophag y (e.g. , Gree n an d Reed, 1998 ; Lock -<br />

shin an d Zakeri , 2004) . Apoptosi s i s a highl y con -<br />

trolled mechanism , durin g whic h specifi c transcrip t<br />

<strong>and</strong> protein change s occur . Apoptosis has been calle d<br />

cellular suicide , a s it only affects th e cel l undergoin g<br />

it. I n contrast , durin g necrosis , cell s an d <strong>the</strong>i r or -<br />

ganelles swel l <strong>and</strong> burst , releasing enzymes int o th e<br />

local environment . A resul t o f thi s typ e o f deat h i s<br />

damage to neighboring cells, thus causing a cluster <strong>of</strong><br />

dying cells. Autophagy involves lysosymal engulfmen t<br />

<strong>of</strong> damaged cell s o r cell fragments . In man y model s

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!