07.02.2013 Views

Brain Development: Normal Processes and the Effects of Alcohol ...

Brain Development: Normal Processes and the Effects of Alcohol ...

Brain Development: Normal Processes and the Effects of Alcohol ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

phase as <strong>the</strong>y passed through G2 , M, <strong>and</strong> Gl phase s<br />

<strong>of</strong> <strong>the</strong> cel l cycl e (Sidman e t al., 1959 ; Angevine <strong>and</strong><br />

Sidman, 1961 ; Fujit a an d Miyake , 1962 ; Sidman ,<br />

1970). I t becam e possibl e t o estimat e cel l cycl e pa -<br />

rameters an d th e tim e o f generation o f different cel l<br />

types throug h cumulativ e o r puls e labelin g wit h<br />

[ 3 H]dT. Recen t developmen t o f nonradioactiv e<br />

S-phase marker s bromodeoxyuridin e (BrdU ) an d<br />

iododeoxyuridine fur<strong>the</strong>r enhance d th e versatilit y <strong>of</strong><br />

<strong>the</strong>se method s (Mille r <strong>and</strong> Nowakowski , 1988, 1991 ;<br />

Takahashi e t al , 1992 ; Haye s an d Nowakowski ,<br />

2000; Tarui et al., 2005).<br />

S-phase labeling methods hav e been exploited, <strong>of</strong>ten<br />

combinin g th e radioactiv e an d nonradioactiv e<br />

markers t o perfor m sophisticate d analyse s <strong>of</strong> cell cy -<br />

cle kinetic s an d cel l outpu t function s o f PV E an d<br />

SPP cells in <strong>the</strong> embryonic murine neocortex (Miller<br />

<strong>and</strong> Nowakowski , 1991; Cavines s e t al, 1995 ; Haye s<br />

<strong>and</strong> Nowakowski , 2000 ; Takahash i e t al , 2002 ;<br />

Siegenthaler <strong>and</strong> Miller , 2005 ; inter alia) . This work<br />

shows that <strong>the</strong> neocortical PVE cells in fetal mic e executed<br />

1 1 cell cycles throughout <strong>the</strong> cours e <strong>of</strong> generation<br />

<strong>of</strong> neocortical neuron s over <strong>the</strong> week from Gil<br />

to G17. During <strong>the</strong> 1 1 cell cycles, <strong>the</strong> length <strong>of</strong> <strong>the</strong> cell<br />

cycle increases (from abou t 8 to 1 8 hours) (Fig. 2-4) ,<br />

<strong>the</strong> increas e bein g du e t o th e leng<strong>the</strong>nin g o f G l<br />

(from abou t 3 t o 1 2 hours). This pattern i s also de -<br />

tected i n ra t neocortica l proliferativ e zone s (Mille r<br />

<strong>and</strong> Kuhn, 1995).<br />

The probabilit y that a new daughter cel l exit s <strong>the</strong><br />

cell cycl e (calle d Q ) increase d durin g th e perio d <strong>of</strong><br />

cortical neuronogenesi s (Miller , 1993 , 1999 ; Mille r<br />

<strong>and</strong> Kuhn , 1995 ; Takahashi e t al, 1999) . I t was near<br />

zero fo r cel l cycl e 1 (o n Gil fo r <strong>the</strong> mouse ) an d<br />

nearly 100 % for cell cycle 1 1 (G16-17). Eac h cell cycle<br />

is associated with specific values <strong>of</strong> Q <strong>and</strong> cell cycle<br />

length (i.e. , <strong>the</strong> lengt h o f <strong>the</strong> Gl-phase) , <strong>the</strong> two<br />

parameters that change (increase) systematically over<br />

<strong>the</strong> cours e o f <strong>the</strong> 1 1 cel l cycle s (Fig . 2-4) . Th e Q<br />

value reache s th e halfwa y mar k during <strong>the</strong> sevent h<br />

<strong>and</strong> eight h cel l cycles , o n approximatel y G14 (Fig .<br />

2-4). Thi s probability value marks a significant milestone<br />

i n <strong>the</strong> lif e history <strong>of</strong> neocortical PVE , a s it indicates<br />

<strong>the</strong> switc h fro m th e expansiv e to <strong>the</strong> depletiv e<br />

phase <strong>of</strong> growth <strong>and</strong> fro m tangentia l to radial expansion<br />

o f <strong>the</strong> neocortex . Fur<strong>the</strong>rmore , i t mark s a significant<br />

mileston e i n neocortica l neuronogenesis :<br />

generation <strong>of</strong> neurons for <strong>the</strong> infragranular layers (layers<br />

V an d VI ) cease s an d tha t fo r <strong>the</strong> granula r layer<br />

(layer IV ) <strong>and</strong> supragranula r layers (layer s II <strong>and</strong> III)<br />

CELL PROLIFERATION 1 5<br />

begins (Fig . 2-4) . Thus , quantitative estimates <strong>of</strong> <strong>the</strong><br />

values o f Q a t each intege r cell cycl e hav e enable d<br />

<strong>the</strong> linkag e <strong>of</strong> Q to laminar destination <strong>of</strong> <strong>the</strong> daugh -<br />

ter cells. In o<strong>the</strong>r words, a novel concept emerges, i n<br />

which th e mechanism s regulatin g Q ar e linke d t o<br />

mechanisms regulatin g cel l fat e o r cel l clas s (Taru i<br />

et al, 2005).<br />

Neuronogenesis acros s th e cortica l mantl e doe s<br />

not procee d simultaneously ; i t abides by various spatiotemporal<br />

gradients (Smart, 1961; Smar t <strong>and</strong> McSh -<br />

erry, 1982 ; Miller , 1988a ; Baye r <strong>and</strong> Altman , 1991) .<br />

The transvers e gradients reflect th e gradient s in cel l<br />

cycle kinetics, especially <strong>the</strong> valu e <strong>of</strong> Q, i n <strong>the</strong> PV E<br />

(Caviness et al., 2000, 2003; Tarui et al, 2005). Thus,<br />

PVE cell s are distribute d along a spatia l continuu m<br />

<strong>of</strong> cell cycl e parameters <strong>and</strong> Q . PV E cell s located a t<br />

<strong>the</strong> rostrolatera l locatio n ar e mor e advance d tha n<br />

those a t <strong>the</strong> caudomedial location with respect to cell<br />

cycle length <strong>and</strong> values <strong>of</strong> Q. That is, rostrolateral precursor<br />

cell s hav e longe r cel l cycl e time s an d highe r<br />

values <strong>of</strong> Q than those <strong>of</strong> caudomedial precurso r cell s<br />

on any given day during <strong>the</strong> interval Gil t o G17. For<br />

example, a given location i n <strong>the</strong> neocortical PV E contains<br />

precursor cell s passin g through th e entir e range<br />

<strong>of</strong> cell cycle times <strong>and</strong> Q values over <strong>the</strong> interval Gil<br />

to G17. At any given time, th e neuroepi<strong>the</strong>lium con -<br />

tains a range <strong>of</strong> cell cycl e times <strong>and</strong> Q values . Cells<br />

destined to multiple layer s in multiple neocortica l ar -<br />

eas aris e contemporaneousl y a t multipl e location s<br />

within <strong>the</strong> neuroepi<strong>the</strong>lium.<br />

Apart fro m th e tangentia l neurogeneti c gradien t<br />

discussed above, neocortical neuronogenesis proceeds<br />

along a radial dimension, a characteristic common t o<br />

laminar structures throughout th e nervou s system. At<br />

any give n locatio n o f <strong>the</strong> neocortica l anlagen , neu -<br />

rons are generated i n an inside-out pattern (Angevin e<br />

<strong>and</strong> Sidman , 1961 ; Berr y et al , 1964 ; Berr y <strong>and</strong><br />

Rogers, 1965 ; Caviness , 1982 ; Miller , 1985) . Deep -<br />

layer neuron s ar e generate d earlie r than th e superficial<br />

laye r neurons . Usin g a double S-phas e labelin g<br />

method, Takahashi an d colleague s (1999 ) correlate d<br />

<strong>the</strong> lamina r position <strong>of</strong> a neocortical neuron with its<br />

"birth hour. " Throug h th e us e o f this method , <strong>the</strong> y<br />

were able to correlate <strong>the</strong> time <strong>of</strong> generation <strong>and</strong> laminar<br />

destination <strong>of</strong> neocortical neurons with considerably<br />

higher spatiotempora l resolutio n tha n ha d bee n<br />

possible previously.<br />

A model correlatin g th e probabilit y <strong>of</strong> cell cycl e<br />

exit (which is equivalent to Q) with <strong>the</strong> probabilit y <strong>of</strong><br />

<strong>the</strong> destinatio n o f a neuron i n a specifi c neocortica l

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!