07.02.2013 Views

Brain Development: Normal Processes and the Effects of Alcohol ...

Brain Development: Normal Processes and the Effects of Alcohol ...

Brain Development: Normal Processes and the Effects of Alcohol ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

32 NORMA L DEVELOPMENT<br />

too rich in cell adhesion proteins, neuronal migration<br />

is impeded , possibl y because th e microenvironmen t<br />

becomes too sticky.<br />

Extracellular Matrix Molecule Reelin<br />

Modern mous e genetic s hav e provide d som e muta -<br />

tions wit h neuronal migratio n disorder s (Tabl e 3-2) .<br />

The reeler mouse ha s received greate r attentio n fro m<br />

developmental neurobiologist s tha n ha s an y o<strong>the</strong> r<br />

mouse mutants . Thi s mous e exhibit s characteristi c<br />

lamination defect s <strong>of</strong> cerebral cortex , <strong>the</strong> hippocam -<br />

pus, <strong>and</strong> th e cerebellu m (Raki c <strong>and</strong> Caviness , 1995 ;<br />

Lambert de Rouvroit <strong>and</strong> G<strong>of</strong>finet, 1998) . I n <strong>the</strong> mu -<br />

tants, neocortica l neuron s ar e generate d i n th e V Z<br />

<strong>and</strong> S Z as in <strong>the</strong> wild-typ e animals <strong>and</strong> initiall y <strong>the</strong>ir<br />

migration seems normal. A major differenc e i s that <strong>the</strong><br />

preplate is never split into <strong>the</strong> M Z an d th e SP ; <strong>the</strong>refore,<br />

th e C P form s unde r <strong>the</strong> so-calle d superplate . As<br />

<strong>the</strong> migratin g neurons approac h th e CP , neuron s i n<br />

<strong>the</strong> reeler mic e fai l t o for m norma l architectoni c or -<br />

ganizations. Instea d o f forming b y a n inside-ou t pattern<br />

o f neuronogenesis , <strong>the</strong> birthdat e o f neuron s i n<br />

<strong>the</strong> mutant cortex is reversed. Early-generated neurons<br />

are locate d superficiall y <strong>and</strong> late-generate d neuron s<br />

are distributed in deep cortex. Remarkably, despite <strong>the</strong><br />

Protein <strong>and</strong> Function<br />

Reelin, ECM protei n<br />

Astrotactin 1 , neuron-glia cell adhesion molecul e<br />

Integrin a^ subunit, cell surface receptor bind s to reelin<br />

positioning defects, neurons do make correct connections,<br />

although <strong>the</strong> axonal pathways are distorted.<br />

The clonin g o f th e defectiv e gen e relin ha s in -<br />

creased interes t in thi s mutatio n (D'Arcangel o e t al. ,<br />

1995). Reelin is expressed by Cajal-Retzius neurons i n<br />

<strong>the</strong> M Z o f <strong>the</strong> developin g cerebral wal l (D'Arcangel o<br />

et al., 1997) . How reelin functions in neuronal migra -<br />

tion i s an are a o f intense research ; n o consensu s ha s<br />

been reached. Mos t results support <strong>the</strong> idea that reeli n<br />

controls laminatio n b y acting a s a sto p signa l fo r mi -<br />

grating neuron s (Dulabo n e t al. , 2000) . Accordingly ,<br />

neurons migrate past <strong>the</strong> previously deposited neurons<br />

in <strong>the</strong> lower CP where reelin is not expressed. The mi -<br />

grating neurons proceed t o <strong>the</strong> superficia l edg e o f <strong>the</strong><br />

CP borderin g <strong>the</strong> MZ where reelin i s expressed (Cur -<br />

ran <strong>and</strong> D'Arcangelo, 1998) . This finding implies that<br />

reelin tells <strong>the</strong> neurons to stop migrating. Some o f <strong>the</strong><br />

migration defects characteristic <strong>of</strong> <strong>the</strong> reeler mice, such<br />

as th e lac k o f splitting o f th e preplate , i s rescued i n<br />

transgenic mic e i n which reeli n expressio n is targeted<br />

in <strong>the</strong> VZ <strong>and</strong> SZ. Thus, <strong>the</strong> role <strong>of</strong> reelin in developing<br />

cortex is more complicated than simply providing a<br />

migratory stop signal (Magdaleno et al., 2002).<br />

Reelin binds to two receptors expressed by migrating<br />

neurons , Apo E recepto r 2 <strong>and</strong> ver y low-density<br />

lipoprotein recepto r (VLDLr ) (D'Arcangel o e t al. ,<br />

TABLE 3- 2 Mous e mutations that affect neuronal migration<br />

Integrin oc 6 subunit, cell surface receptor binds to laminin<br />

Integrin (3j , cell surface receptor interacts with reelin,<br />

laminin<br />

Laminin Y J subunit, ECM protei n<br />

Very low-density lipoprotei n receptor , reelin recepto r<br />

Low-density lipoprotein receptor-related protein, reeli n<br />

receptor also known as ApoE receptor 2<br />

Disabled homolog 1 , interacts with VLDLr/Lrp8<br />

Cyclin-dependent kinase 5, phosphorylates Dabi<br />

<strong>and</strong> NUDEL<br />

LISl/PAFAHIb, binds to dynein, microtubule<br />

Doublecortin, microtubule-associated protein<br />

Gene<br />

rein<br />

astn<br />

itga3<br />

itgao<br />

itgbl<br />

lame I<br />

vldlr<br />

Irp8<br />

dabl<br />

cdkS<br />

PAFAHIb<br />

dcx<br />

Structural Phenotype<br />

reeler mouse, inverted cortical layering , absence <strong>of</strong><br />

preplate split<br />

Slowed radial migration<br />

Abnormal laminar positioning <strong>of</strong> projection neurons<br />

Basement membrane breac h<br />

Cortical layering perturbation<br />

Basement membrane breach<br />

Cortical layerin g perturbation<br />

Basement membrane breac h<br />

Cortical layering perturbation<br />

Reeler phenotype in Vldlr/LrpS doubl e knockout<br />

Reeler phenotype in Vldlr /Lrp8 doubl e knockout<br />

Reeler phenotype, mutated in yotari <strong>and</strong> scrambler<br />

Inverted cortical layering<br />

Null is lethal, hypomorphic mutations caus e<br />

migration defect<br />

No migration phenotyp e

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!