07.02.2013 Views

Brain Development: Normal Processes and the Effects of Alcohol ...

Brain Development: Normal Processes and the Effects of Alcohol ...

Brain Development: Normal Processes and the Effects of Alcohol ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

16 NORMA L DEVELOPMEN T<br />

& Kfflitmt ttmmtt&gmêtâc $méfant aaà Sequential frìgia qfnêwwn* <strong>of</strong> ike Â9/feœnt g&ifical fayei$<br />

FIGURE 2- 4 Spatiotempora l gradient s o f cell proliferatio n <strong>and</strong> neurogenesi s i n th e cerebra l cortex .<br />

Neurogenesis in <strong>the</strong> cerebra l cortex progresses along tangential (A ) <strong>and</strong> radia l (B) gradients. A. Neo -<br />

cortical neurogenesi s begin s at <strong>the</strong> rostroventrolatera l regio n o n gestationa l da y (G) 1 1 in mice an d<br />

proceeds toward <strong>the</strong> caudodorsomedial regio n in a systematic gradient (curved arrow). This transverse<br />

neurogenetic gradien t translates into a corresponding gradient in cel l cycle length o f <strong>the</strong> precursor<br />

population an d <strong>the</strong> probability <strong>of</strong> cell cycle exi t (Q) for <strong>the</strong> daughte r cells . Thus, precursor cell s in<br />

<strong>the</strong> pseudostratifie d ventricula r epi<strong>the</strong>lium (PVE ) i n <strong>the</strong> rostroventrolatera l region have longer cell<br />

cycle time <strong>and</strong> highe r values <strong>of</strong> Q compare d to <strong>the</strong>ir counterparts in <strong>the</strong> caudodorsomedial region.<br />

B. Neurogenesis als o proceeds alon g a radial gradient. Neurons <strong>of</strong> <strong>the</strong> deep layers are produced ear -<br />

lier than those in <strong>the</strong> superficial layers. Each neocortica l PVE cell in mice, on average, undergoes 1 1<br />

cell cycles over a 7-day period from Gil to G17. Cell cycle length increase s with each cell cycle <strong>and</strong><br />

each cycle is associated with a unique value <strong>of</strong> Q. Thus, <strong>the</strong> cel l cycle length increase s from abou t 8<br />

to 1 8 hours over <strong>the</strong> cours e o f 1 1 cell cycles . The valu e <strong>of</strong> Q increase s from abou t 0. 1 t o 0.8 , ap -<br />

proaching <strong>the</strong> maximal value <strong>of</strong> 1.0, during this interval <strong>and</strong> reaches <strong>the</strong> halfway mark (0.5) betwee n<br />

cell cycle s 7 <strong>and</strong> 8 on G1 4 (broken line an d asterisk) . Each cel l cycl e produces cell s destine d fo r<br />

specific neocortical layer(s). Thus, cell cycle number, cell cycle length, Q, <strong>and</strong> layer destination are<br />

linked to one ano<strong>the</strong>r during normal development. (Source: Base d on data <strong>of</strong> Takahashi et al., 1999 ;<br />

Tarili et al., 2005)<br />

layer wa s <strong>the</strong> n develope d b y Takahash i an d col -<br />

leagues (1999) . Theoretically , neuron s produce d a t<br />

any time point during <strong>the</strong> neurogenetic sequenc e ca n<br />

have som e probabilit y <strong>of</strong> occupying any neocortica l<br />

layer. I n reality , however , durin g norma l develop -<br />

ment neuron s generate d durin g cel l cycl e 1 hav e<br />

nearly a 100 % probabilit y <strong>of</strong> occupying laye r VI an d<br />

0% probability <strong>of</strong> occupying layer II—III, <strong>and</strong> neuron s<br />

generated durin g cel l cycl e 1 1 (th e fina l cel l cycle )<br />

have a near 100 % probability <strong>of</strong> occupying layer II—III<br />

<strong>and</strong> 0 % probabilit y <strong>of</strong> occupyin g laye r VI . Sinc e a<br />

given cell cycle number is associated with given values

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!