07.02.2013 Views

Brain Development: Normal Processes and the Effects of Alcohol ...

Brain Development: Normal Processes and the Effects of Alcohol ...

Brain Development: Normal Processes and the Effects of Alcohol ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

14 NORMA L DEVELOPMENT<br />

depends o n <strong>the</strong> syn<strong>the</strong>sis <strong>and</strong> destruction o f cyclins as<br />

well as on <strong>the</strong> function o f Cdk-activating kinases <strong>and</strong><br />

Cdk inhibitor s (LaBaer et al. , 1997 ; Morgan , 1997 ;<br />

Cheng et al, 1999 ; Sherr <strong>and</strong> Roberts, 1999 ; Murray,<br />

2004). Eac h Cd k ha s a preferre d cycli n partner(s) .<br />

For example, Cdk 2 associate s wit h cyclin s A <strong>and</strong> E ,<br />

whereas Cdk 4 an d Cdk o associat e wit h D-typ e cy -<br />

clins. Association <strong>of</strong> Cdks wit h cyclin s results in th e<br />

regulation <strong>of</strong> <strong>the</strong> cel l cycle at two principal transition<br />

points: th e transition s fro m th e G l t o S phase, an d<br />

from G 2 t o M (Murra y <strong>and</strong> Hunt , 1993 ) (Fig . 2-3) .<br />

Cdk2, Cdk4 , an d Cdk 6 ar e principall y involved i n<br />

<strong>the</strong> regulation <strong>of</strong> <strong>the</strong> transition from Gl t o S, whereas<br />

Cdkl regulate s <strong>the</strong> G2- M transition . The transitio n<br />

from G l t o S phas e i s associate d wit h additiona l<br />

mechanisms o f regulatio n involvin g th e retinoblas -<br />

toma protei n (Rb ) <strong>and</strong> th e transcriptio n factor E2F .<br />

Association o f Cdk s wit h cyclin s inactivate s R b b y<br />

phosphorylation, which in turn result s in <strong>the</strong> releas e<br />

<strong>of</strong> E2F . E2 F promotes th e transitio n fro m G l t o S<br />

<strong>and</strong> DNA syn<strong>the</strong>sis (Dyson, 1998 ; Frolov et al, 2001 ).<br />

Control ove r cell cycl e progressio n a t <strong>the</strong> Gl-to -<br />

S-phase transitio n i s exercise d b y Cd k inhibitors ,<br />

which inhibi t th e activit y <strong>of</strong> th e Cdk-cycli n com -<br />

plexes (Ferguso n e t al., 2000) . Inhibitio n o f Cdk ac -<br />

tivity b y specifi c Cd k inhibitor s suc h a s p27 Ki P ] o r<br />

p21 Wafl suppresse s <strong>the</strong> entr y into <strong>the</strong> S phase (Zind y<br />

et al, 1997 , 1999 ; Delall e e t al., 1999 ; Siegenthale r<br />

<strong>and</strong> Miller, 2005) (Fig. 2-3). Muc h o f <strong>the</strong> regulation<br />

<strong>of</strong> cytogenesi s i n th e developin g brai n i s thought t o<br />

occur a t <strong>the</strong> Gl/S transitio n (Cavines s e t al, 1996 ;<br />

Ross, 1996) . Transcriptio n factors , growt h factors ,<br />

hormones, an d neurotransmitter s ar e amon g th e<br />

most commo n regulator s o f cel l proliferatio n i n<br />

<strong>the</strong> developin g brain . They are believed t o act upo n<br />

<strong>the</strong> Gl/S transitio n poin t t o increase o r decrease th e<br />

output <strong>of</strong> neurons or glia (Caviness et al., 1996 ; Ross ,<br />

1996).<br />

Much o f our underst<strong>and</strong>in g <strong>of</strong> cell cycl e regula -<br />

tion derives from i n vitro studies. That said, <strong>the</strong> PV E<br />

<strong>and</strong> SP P cell s i n th e intac t mammalia n brai n diffe r<br />

from th e precursor cells maintained i n a Petri dish i n<br />

one importan t aspect. PV E an d SP P cell s in th e in -<br />

tact brain serve a histogenetic agenda, which warrants<br />

generation o f a specific number o f specific cell type s<br />

in a spatiotemporal gradient over a restricted period <strong>of</strong><br />

time. Therefore, t o underst<strong>and</strong> mechanisms that reg -<br />

ulate CNS histogenesi s we need to analyze cell prolif -<br />

eration i n population s o f PV E o r SP P cell s i n th e<br />

intact brain . A challeng e face d b y developmenta l<br />

neurobiologists i s to assimilat e mechanisti c insights ,<br />

gained b y analysis <strong>of</strong> cell cycl e regulatory machinery<br />

from studie s <strong>of</strong> dissociated cells , into analyses <strong>of</strong> cel l<br />

cycle kinetic s an d cel l outpu t fro m population s o f<br />

PVE or SPP cells i n th e intac t brain . Th e followin g<br />

section describe s recent progress i n efforts along those<br />

lines. Complementary insigh t into <strong>the</strong>se issue s is provided<br />

b y studyin g <strong>the</strong> proliferativ e response i n th e<br />

developing brai n followin g ethano l exposur e (se e<br />

Chapters 1 1 <strong>and</strong> 12) . Much <strong>of</strong> our knowledg e o f th e<br />

kinetics <strong>of</strong> PVE <strong>and</strong> SPP cell cycle in <strong>the</strong> intact brain<br />

is derive d fro m analyse s o f neocortica l PV E cells .<br />

Therefore, th e followin g section focuse s mainl y o n<br />

cell cycle kinetics <strong>of</strong> neocortical PVE .<br />

CELL CYCLE KINETICS<br />

AND DYNAMIC S OF<br />

CELL PROLIFERATION I N<br />

THE NEOCORTEX<br />

In an y tissue or organ system, <strong>the</strong> precursor cell popu -<br />

lation initiall y exp<strong>and</strong>s by producing large numbers <strong>of</strong><br />

new precurso r cells . Th e precurso r cel l populatio n<br />

subsequently deplete s itsel f through (a ) <strong>the</strong> productio n<br />

<strong>of</strong> large numbers o f daughter cells , which exi t <strong>the</strong> cel l<br />

cycle, differentiate , an d acquir e matur e phenotypes ,<br />

<strong>and</strong> (b ) th e deat h o f cyclin g cell s (se e Chapte r 5) .<br />

This type o f biphasic growth pattern ensure s <strong>the</strong> pro -<br />

duction o f a large numbe r o f cells withi n a specified<br />

time interval . Th e neocortica l PV E follow s thi s<br />

growth pattern. It undergoes two phases <strong>of</strong> growth: an<br />

initial phase <strong>of</strong> expansion during which mos t daugh -<br />

ter cell s retur n t o th e precurso r pool , an d a late r<br />

phase o f depletion whe n mos t o f <strong>the</strong> daughte r cell s<br />

differentiate int o neuron s o r glia (Smart, 1976 ; Cavi -<br />

ness e t al, 1995 ; Mille r an d Kuhn , 1995 ; Takahash i<br />

et al, 1996 , 1997) . Interestingly , during <strong>the</strong> phas e <strong>of</strong><br />

expansion, th e PV E grow s in th e tangentia l dimen -<br />

sion, <strong>and</strong> thi s growth result s in expansion o f <strong>the</strong> PV E<br />

such tha t i t cover s th e underlyin g subcortica l struc -<br />

tures. There i s little expansio n o f <strong>the</strong> PV E i n th e ra -<br />

dial dimension ; growt h i n th e radia l dimensio n i s<br />

seemingly reserve d fo r late r developmenta l period s<br />

when newbor n neuron s an d gli a are release d fro m a<br />

depleting PV E (Miller, 1989) .<br />

The us e o f th e S-phas e marke r [ 3 H]thymidine<br />

(pH]dT) revolutionize d th e analysi s <strong>of</strong> neuroepi<strong>the</strong>lial<br />

cel l cycl e kinetics by permitting identification <strong>of</strong><br />

nuclei in S phase <strong>and</strong> tracking <strong>the</strong> nuclei labeled i n S

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!