07.02.2013 Views

Brain Development: Normal Processes and the Effects of Alcohol ...

Brain Development: Normal Processes and the Effects of Alcohol ...

Brain Development: Normal Processes and the Effects of Alcohol ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

FIGURE 4- 2 Structur e o f <strong>the</strong> growt h cone . Th e mor -<br />

phological zone s o f a growth con e ar e show n usin g a<br />

differential interferenc e contras t micrograp h o f a dendritic<br />

growth cone from a cultured ra t neocortical neu -<br />

ron. Not e th e thic k centra l zon e (C) , separate d fro m<br />

<strong>the</strong> fla t periphera l zon e (P ) b y th e transitiona l zon e<br />

(T). Also , i n th e periphera l zone , th e lamellipodiu m<br />

<strong>and</strong> several filopodia are indicated by dashed lines.<br />

structures diffe r considerabl y (Strasse r e t al. , 2004) .<br />

Thus, <strong>the</strong> presen t discussio n <strong>of</strong> growth con e motilit y<br />

is confined to models from experiment s done o n neuronal<br />

growth cones .<br />

Growth Cone Motility<br />

The exac t relationship between filopodial, lamellipodial,<br />

an d neurit e motilit y i s no t completel y under -<br />

stood. Filopodi a sampl e th e environmen t fo r cues to<br />

determine th e directio n o f growth (O'Conno r e t al. ,<br />

1990), <strong>and</strong> thus filopodial motility tends to reflect this<br />

scanning patter n ra<strong>the</strong> r tha n demonstratin g a tigh t<br />

link wit h neurit e growth . The movement s o f lamellipodia<br />

are better correlate d with neurite growt h than<br />

those o f filopodia , bu t lamellipodi a commonl y en -<br />

gage i n extensio n an d retractio n tha t d o no t directl y<br />

correlate with alterations i n <strong>the</strong> trajectory <strong>of</strong> <strong>the</strong> growing<br />

neurite.<br />

Growth con e motilit y requires dynamic regulation<br />

<strong>of</strong> th e cytoskeleton . Th e treadmil l model , whic h i s<br />

based on observations in filopodia, focuses on <strong>the</strong> rol e<br />

<strong>of</strong> acti n (Fig . 4-3 ) (Li n e t al, 1994) . Filament s o f<br />

actin are simultaneously polymerized at <strong>the</strong> dista l tips<br />

<strong>of</strong> filopodi a an d retracte d proximall y b y myosi n<br />

NEURONAL DIFFERENTIATION: FROM AXONS TO SYNAPSE S 4 9<br />

FIGURE 4- 3 Th e acti n treadmil l mode l o f motility.<br />

The tw o principle features <strong>of</strong> <strong>the</strong> treadmill model ar e<br />

<strong>the</strong> retrograd e flo w o f actin, whic h i s due t o myosi n<br />

motors, <strong>and</strong> <strong>the</strong> polymerization <strong>of</strong> actin at <strong>the</strong> leading<br />

edge o f <strong>the</strong> filopodi a (o n right) . I f polymerization i s<br />

faster tha t retrograd e flow , <strong>the</strong>r e i s forwar d move -<br />

ment; i f it is slower, <strong>the</strong>re i s retraction. Note that actin<br />

is coupled t o <strong>the</strong> substrate by linker proteins that bind<br />

transmembrane CAMs .<br />

motors (Li n e t al., 1996) . I f <strong>the</strong> rat e <strong>of</strong> actin polymer -<br />

ization a t <strong>the</strong> leadin g edg e i s greater than th e rat e <strong>of</strong><br />

actin retrograd e flow , th e filopodi a advances . I f polymerization<br />

is slower than retrograde flow, <strong>the</strong> filopodia<br />

retracts. If polymerization <strong>and</strong> retrograd e flow are balanced,<br />

<strong>the</strong>r e i s no ne t chang e i n th e positio n o f th e<br />

filopodia. The substrat e on which a neurite grows can<br />

interact wit h transmembran e adhesio n molecules ,<br />

which ar e attache d t o actin indirectl y via linker pro -<br />

teins. Th e couplin g o f <strong>the</strong> substrat e t o th e acti n cy -<br />

toskeleton (a ) allow s fo r th e generatio n o f tensio n<br />

when force s are applied t o actin an d (b ) accounts for<br />

<strong>the</strong> influenc e o f substrat e o n growt h con e motilit y<br />

(Suter an d Forscher , 1998) . This mode l i s not com -<br />

plete, a s axon s treate d wit h acti n depolymerizin g<br />

agents stil l demonstrat e ne t growt h (Bentle y an d<br />

Toroian-Raymond, 1986) , an d applicatio n o f rnicro -<br />

tubule destabilizing reagents can prevent neurite out -<br />

growth (Bamburg et al., 1986) . It should be noted that<br />

current model s o f growt h con e motilit y ar e largel y<br />

based o n experiments in unpolarized Aplysia neuron s<br />

or in spinal or sensory neurons isolate d from frog s an d<br />

chicks. Som e mechanism s o f growt h con e motilit y<br />

may differ amon g species , cell types, <strong>and</strong> neurite type ,<br />

but th e regulator y molecule s ar e likel y t o b e conserved.<br />

A large an d divers e group o f proteins tha t modu -<br />

late cytoskeleta l dynamic s throug h intracellula r<br />

signaling o r direc t actio n i s involve d i n regulatin g<br />

growth con e motility . Th e Rh o famil y o f proteins ,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!