07.02.2013 Views

Brain Development: Normal Processes and the Effects of Alcohol ...

Brain Development: Normal Processes and the Effects of Alcohol ...

Brain Development: Normal Processes and the Effects of Alcohol ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1999; Hiesberger et al, 1999) . Mice deficient i n both<br />

<strong>of</strong> <strong>the</strong>se receptor s exhibit phenotypes identical to that<br />

<strong>of</strong> <strong>the</strong> reeler mouse (Trommsdorff et al., 1999) . There<br />

may b e o<strong>the</strong> r receptor s involve d in transducin g <strong>the</strong><br />

reelin signal . Reeli n als o binds to integri n oc 3pj an d<br />

cadherin-related neurona l receptor s (Senzak i e t al. ,<br />

1999; Dulabo n e t al , 2000) . Apparently , reelin -<br />

integrin bindin g i s no t require d fo r reeli n functio n<br />

because integrin pj knockout mouse does not exhibit<br />

a ree/er-like phenotype.<br />

Downstream reelin-induced signalin g involves <strong>the</strong><br />

phosphorylation o f Drosophila disable d homologu e<br />

(Dab) 1 (Howell et al., 1999). Mice with mutations in<br />

<strong>the</strong> gene s dabl, scrambler, <strong>and</strong> yotari exhibi t phenotypes<br />

similar to that <strong>of</strong> reeler mice. Dabi binds to th e<br />

intracellular domain s o f lipoprotein receptor s an d i s<br />

tyrosine phosphorylate d upo n lig<strong>and</strong>-recepto r bind -<br />

ing (Trommsdorff et al, 1998 ; Keshvar a et al., 2001).<br />

Surprisingly, reeli n ha s been show n t o posses s a serine<br />

protease activit y <strong>and</strong> can diges t extracellular matrix<br />

molecules (Quattrocchi et al, 2002). Whe<strong>the</strong>r its<br />

enzymatic activit y regulate s neurona l migratio n re -<br />

mains to be evaluated.<br />

The mous e knockou t <strong>of</strong> cyclin-dependent kinase<br />

(Cdk) 5 (a serine/threonine kinase ) or o f its activator<br />

protein, p35 , exhibit s a reeler-like cortica l migration<br />

phenotype (Gilmor e e t al. , 1998 ; Kwo n an d Tsai ,<br />

1998). A major differenc e is that th e preplat e i s split<br />

into <strong>the</strong> MZ <strong>and</strong> <strong>the</strong> SP in <strong>the</strong>se mutant mice. Thus,<br />

Cdk5 <strong>and</strong> p35 may function in a different pathwa y to<br />

control neurona l migratio n fro m reelin . Cdk 5 ca n<br />

phosphorylate Dabi independent o f reelin binding to<br />

its receptor s (Keshvara et al. , 2002) . There ma y b e<br />

crosstalk betwee n th e reeli n signalin g pathwa y an d<br />

<strong>the</strong> Cdk 5 pathway.<br />

MIGRATION DEFECTS<br />

X-linked Periventricular<br />

Heterotopias: Failure to<br />

Initiate Migration<br />

X-linked periventricula r heterotopia s ar e nodule s <strong>of</strong><br />

neurons linin g <strong>the</strong> V Z o r SZ . Presumably <strong>the</strong>re i s a<br />

failure o f neuron s t o migrat e ou t o f proliferat i ve<br />

zones. The geneti c defect in X-linked periventricular<br />

heterotopia i s mutations i n FLNA , an X-linke d gen e<br />

encoding filami n A (Fox et al., 1998) . Filami n A is a<br />

large actin-binding phosphoprotein with a molecular<br />

NEURONAL MIGRATION 3 3<br />

weight <strong>of</strong> 280 kDa. It is necessary for <strong>the</strong> locomotio n<br />

<strong>of</strong> several cell types <strong>and</strong> i s expressed by cells in all layers<br />

o f th e developin g cerebra l cortex . Hemizygou s<br />

males with null mutations die during <strong>the</strong> embryoni c<br />

period. Heterozygou s female s have epileps y that ca n<br />

be accompanie d b y o<strong>the</strong> r manifestation s suc h a s<br />

patent ductus arteriosus. I t i s believe d tha t r<strong>and</strong>o m<br />

X-chromosome inactivatio n result s in inactivatio n o f<br />

FLNA expressio n in str<strong>and</strong>e d neurons . Recently , affected<br />

male s with likely partial loss-<strong>of</strong>-function muta -<br />

tions in FLNA (e.g. , amino aci d 65 6 Leu t o Phe an d<br />

amino aci d 230 5 Tyr t o sto p codon ) hav e bee n re -<br />

ported (Shee n e t al., 2001; Moro e t al, 2002). Interestingly,<br />

male s wit h <strong>the</strong>s e mutation s hav e neuron s<br />

that ei<strong>the</strong>r migrate normally or exhibit complete mi -<br />

gratory arrest . Thi s dichotom y suggest s tha t o<strong>the</strong> r<br />

functionally relate d gene s can compensate fo r filamin<br />

A deficiency . Indeed , a structurall y relate d gene ,<br />

FLNB, i s als o expresse d i n th e developin g cerebra l<br />

cortical wall, <strong>and</strong> both proteins can form heterodimer s<br />

(Sheen et al., 2002).<br />

The mechanism throug h which filamin A regulates<br />

<strong>the</strong> initiatio n <strong>of</strong> migration is unclear. Likely it involves<br />

<strong>the</strong> abilit y o f filami n A t o cross-lin k F-acti n int o<br />

isotropie, orthogonal arrays (Stossel et al., 2001). Crosslinking<br />

<strong>of</strong> F-actin increase s <strong>the</strong> viscosit y <strong>and</strong> stiffnes s<br />

<strong>of</strong> actin an d ma y be involve d in th e initiatio n <strong>of</strong> migration.<br />

In <strong>the</strong> V Z <strong>and</strong> SZ , FLNA i s expressed by all<br />

cells —mitotic <strong>and</strong> postmitotic cells. If filamin A regulates<br />

<strong>the</strong> initiation <strong>of</strong> neuronal migration, why do only<br />

postmitotic neuron s migrat e ou t o f <strong>the</strong> V Z an d S Z<br />

when all cells express FLNA? A potential mechanism<br />

involves filamin A-interacting protei n (FILIP). FILIP<br />

is expressed in <strong>the</strong> VZ <strong>and</strong> SZ, but not in postmitoti c<br />

migrating neuron s (Nagan o et al. , 2002) . FILIP-fil -<br />

amin A binding induces <strong>the</strong> degradation <strong>of</strong> filamin A.<br />

Thus, <strong>the</strong> loss <strong>of</strong> FILIP expressio n in postmitotic neu -<br />

rons may enable filami n A to control <strong>the</strong> star t <strong>of</strong> migration.<br />

Double Cortex Syndrom e an d Type I<br />

Lissencephaly: Prematur e Cessatio n<br />

<strong>of</strong> Neuronal Migratio n<br />

Double cortex describe s a conditio n i n whic h a<br />

subcortical-b<strong>and</strong> heterotopia form s i n <strong>the</strong> subcortical<br />

IZ, <strong>the</strong> anlag e o f <strong>the</strong> whit e matter . Mutations i n a n<br />

X-linked gene, doublecortin (dcx)y ar e a genetic caus e<br />

<strong>of</strong> <strong>the</strong> disorder (des Portes et al, 1998 ; Gleeso n e t al,<br />

1998). Doublecortin is a 40 kDa protein, expressed by

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!