12.07.2015 Views

Chapitre 3 - lamsin

Chapitre 3 - lamsin

Chapitre 3 - lamsin

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

et le coefficient λ i est donné par :∫ b∫1 bQ n+1 (x)λ i = L i (x) w(x)dx =w(x)dxaQ n+1 (x i ) a x − x iCalculons alors Q n+1(x). D’après la relation de récurrence qui lie les polynômes (Q k ), on a :x − x iQ k+1 (x) = (x − α k+1 ) Q k (x) −γ kQ k−1 (x)γ k−1d’où :Q k+1 (x i ) = (x i − α k+1 ) Q k (x i ) − γ kQ k−1 (x i )γ k−1En multipliant la première équation par Q k (x i ) et la deuxième par Q k (x), puis en retranchantla première de la deuxième, on aura après division par γ k :Q k+1 (x)Q k (x i ) − Q k (x)Q k+1 (x i )γ k= (x − x i ) Q k(x)Q k (x i )γ k+ Q k(x)Q k−1 (x i ) − Q k−1 (x)Q k (x i )γ k−1Ce qui entraine que :n∑ Q k (x)Q k (x i )n∑(x − x i )=γ kk=1−k=1n∑k=1Q k+1 (x)Q k (x i ) − Q k (x)Q k+1 (x i )γ kQ k (x)Q k−1 (x i ) − Q k−1 (x)Q k (x i )γ k−1= Q n+1(x)Q n (x i )γ n− Q 1(x)Q 0 (x i ) − Q 0 (x)Q 1 (x i )γ 0= Q n+1(x)Q n (x i )γ n− (x − x i)γ 0D’où( n∑)Q n+1 (x) γ n Q k (x)Q k (x i )=+ 1 x − x i Q n (x i )γ k γ 0k=1d’où∫1 bQ n+1 (x)λ i =Q ′ n+1 (x w(x)dxi) a x − x i∫ (γ b n∑)nQ k (x)Q k (x i )=Q n (x i )Q ′ n+1 (x + 1 w(x)dxi) aγ k γ 0{ k=1n∑ ∫γ nQ k (x i ) b∫ b=Q n (x i )Q ′ n+1 (x Q k (x) w(x)dx +i) γ kk=1aaOr Q 0 (x) = 1, donc∫ baet ∫ baQ k (x) w(x)dx =∫ bQ 0 (x)Q 0 (x ) w(x)dx = γ 0 .On obtient donc :γ nλ i =Q n (x i )Q ′ n+1 (x i)D’après la relation de récurrence, on aQ n+2 (x) = (x − α n+2 ) Q n+1 (x) − γ n+1γnd’oùaQ k (x)Q 0 (x) w(x)dx = 0, pour k ≥ 1Q n(x)1γ 0w(x)dx}58

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!