12.07.2015 Views

Chapitre 3 - lamsin

Chapitre 3 - lamsin

Chapitre 3 - lamsin

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Q n+2 (x i ) = − γ n+1Q n (x i )γ nD’oùγnQ n (x i ) = − γ n+1Q n+2 (x i )et doncλ i =−γ n+1Q n+2 (x i )Q ′ n+1 (x i)Corollaire 3.4.1 (La formule de Gauss -Tchebytchev à (n + 1) points)f(x)Soit f une fonction définie sur [−1, 1] telle que √ soit intégrable. Alors, pour tout n dans1 − x 2IN :∫ 1−1f(x)√1 − x 2 dx =πn + 1n∑f(cosi=02i + 12(n + 1) π) + π 2f (2n+2) (η)4 n (2n + 2)!avec η ∈ [−1, 1].Démonstrationon a :Q n+1 (x) = T n+1 (x) = 12cos((n + 1) Arc cos(x)) n ∈ IN ∗2i + 1net x i = cos π ,pour i = 0, 1, ..., n.2(n + 1)Donc, en posant σ i = 2i+12(n+1) πQ ′ n+1(x i ) = − n + 12 n sin(n + 1)σ isin σ iet Q n+2 (x i ) = 12 n+1 sin(n + 1)σ i − sin σ iD’oùγ n+1 = ( 12 n )2 ∫ 1−1cos 2 ((n + 1) Arc cos(x))√1 − x2dx = 14 n ∫ π0cos 2 ((n + 1) s) ds = π 214 nλ i = −γ n+1Q ′ n+1 (x i) Q n+2 (x i )= πn + 1pour i = 0, ..., nḞindu chapitre 3.59

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!