03.03.2013 Views

Basic Research Needs for Solar Energy Utilization - Office of ...

Basic Research Needs for Solar Energy Utilization - Office of ...

Basic Research Needs for Solar Energy Utilization - Office of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

CONCLUSION<br />

The efficient production <strong>of</strong> clean solar fuels presents many scientific challenges. Yet progress in<br />

this field to date provides a strong argument that this goal is achievable. The major scientific<br />

challenges that will need to be addressed are (1) understanding biological mechanisms <strong>for</strong> the<br />

efficient production <strong>of</strong> fuels from biomass; (2) developing a detailed knowledge <strong>of</strong> how the<br />

molecular machinery <strong>of</strong> photosynthesis captures and converts sunlight into chemical energy;<br />

(3) discovering how to use this knowledge to develop robust, bio-inspired chemical systems to<br />

carry out photoconversion; (4) developing catalysts that use photo-generated chemical energy to<br />

efficiently produce such fuels as CH4 and H2; and (5) developing an integrated photo-driven<br />

system <strong>for</strong> solar fuels <strong>for</strong>mation with optimized per<strong>for</strong>mance and a long functional lifetime.<br />

REFERENCES<br />

A. Aden, M. Ruth, K. Ibsen, J. Jechura, K. Neeves, J. Sheehan, B. Wallace, L. Montague,<br />

A. Slayton, and J. Lukas, Lignocellulosic Biomass to Ethanol Process Design and Economics<br />

Utilizing Co-current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis <strong>for</strong> Corn Stover,<br />

NREL/TP-510-32438, National Renewable <strong>Energy</strong> Laboratory (2002); available at<br />

http://www.osti.gov/servlets/purl/15001119-zb17aV/native/.<br />

H. Arakawa, M. Aresta, J.N. Armor, M.A. Barteau, E.J. Beckman, A.T. Bell, J.E. Bercaw,<br />

C. Creutz, E. Dinjus, D.A. Dixon, K. Domen, D.L. Dubois, J. Eckert, E. Fujita, D.H. Gibson,<br />

W.A. Goddard, D.W. Goodman, J. Keller, G.J. Kubas, H.H. Kung, E. Lyons, L.E. Manzer,<br />

T.J. Marks, K. Morokuma, K.M. Nicholas, R. Periana, L. Que, J. Rostrup-Nielson,<br />

W.M.H. Sachtler, L.D. Schmidt, A. Sen, G.A. Somorjai, P.C. Stair, B.R. Stults, and W. Tumas,<br />

“Catalysis <strong>Research</strong> <strong>of</strong> Relevance to Carbon Management: Progress, Challenges, and<br />

Opportunities,” Chem. Rev. 101, 953–956 (2001).<br />

R.E. Blankenship, Molecular Mechanisms <strong>of</strong> Photosynthesis. Blackwell Science: Ox<strong>for</strong>d, UK<br />

(2002).<br />

K.N. Ferreira, T.M. Iverson, K. Maghlaoui, J. Barber, and S. Iwata, “Architecture <strong>of</strong> the<br />

Photosynthetic Oxygen-evolving Center,” Science 303, 1831–1838 (2004).<br />

A. Fujishima and K. Honda, “Electrochemical Photolysis <strong>of</strong> Water at a Semiconductor<br />

Electrode,” Nature 238, 37–38 (1972).<br />

M. Grätzel (Ed.), <strong>Energy</strong> Resources through Photochemistry and Catalysis. Academic Press:<br />

New York, N.Y. (1983).<br />

I. Grotjohann, C. Jolley, and P. Fromme, “Evolution <strong>of</strong> Photosynthesis and Oxygen Evolution:<br />

Implications from the Structural Comparison <strong>of</strong> Photosystems I and II,” Phys. Chem. Chem.<br />

Phys. 6, 4743–4753 (2004).<br />

D. Gust, T.A. Moore, and A.L. Moore, “Mimicking Photosynthetic <strong>Solar</strong> <strong>Energy</strong> Transduction,”<br />

Acc. Chem. Res. 34, 40–48 (2001).<br />

52

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!