14.03.2014 Views

Basic Analysis and Graphing - SAS

Basic Analysis and Graphing - SAS

Basic Analysis and Graphing - SAS

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

76 Performing Univariate <strong>Analysis</strong> Chapter 2<br />

Statistical Details for the Distribution Platform<br />

• Here are the Benchmark Z formulas:<br />

Z USL = (USL-Xbar)/sigma = 3 * CPU<br />

Z LSL = (Xbar-LSL)/sigma = 3 * CPL<br />

Z Bench = Inverse Cumulative Prob(1 - P(LSL) - P(USL))<br />

where:<br />

P(LSL) = Prob(X < LSL) = 1 - Cum Prob(Z LSL)<br />

P(USL) = Prob(X > USL) = 1 - Cum Prob(Z USL).<br />

Statistical Details for Continuous Fit Distributions<br />

Normal<br />

LogNormal<br />

This section contains statistical details for the options in the Continuous Fit menu.<br />

The Normal fitting option estimates the parameters of the normal distribution. The normal distribution is<br />

often used to model measures that are symmetric with most of the values falling in the middle of the curve.<br />

Select the Normal fitting for any set of data <strong>and</strong> test how well a normal distribution fits your data.<br />

The parameters for the normal distribution are as follows:<br />

• μ (the mean) defines the location of the distribution on the x-axis<br />

• σ (st<strong>and</strong>ard deviation) defines the dispersion or spread of the distribution<br />

The st<strong>and</strong>ard normal distribution occurs when μ = 0 <strong>and</strong> σ = 1 . The Parameter Estimates table shows<br />

estimates of μ <strong>and</strong> σ, with upper <strong>and</strong> lower 95% confidence limits.<br />

1 ( x – μ) pdf: ----------------- exp –-------------------<br />

2<br />

for ; ; 0 < σ<br />

2πσ 2 2σ 2 – ∞ < x < ∞ – ∞ < μ < ∞<br />

E(x) = μ<br />

Var(x) = σ 2<br />

The LogNormal fitting option estimates the parameters μ (scale) <strong>and</strong> σ (shape) for the two-parameter<br />

lognormal distribution. A variable Y is lognormal if <strong>and</strong> only if X = ln( Y)<br />

is normal. The data must be<br />

greater than zero.<br />

–( log( x)<br />

– μ)<br />

2<br />

exp ----------------------------------<br />

1<br />

pdf: --------------<br />

2σ<br />

------------------------------------------------- 2<br />

for 0 ≤ x ; – ∞ < μ < ∞; 0 < σ<br />

σ 2π x<br />

E(x) = exp( μ+<br />

σ 2 ⁄ 2)<br />

Var(x) = exp( 2( μ + σ 2 ))<br />

– exp( 2μ+<br />

σ 2 )

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!