21.06.2014 Views

Subsampling estimates of the Lasso distribution.

Subsampling estimates of the Lasso distribution.

Subsampling estimates of the Lasso distribution.

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

3.2 Limit in <strong>distribution</strong> 23<br />

almost surely. Finally we have<br />

Z n (φ) → P (φ − β) ′ C(φ − β) ′ + σ 2 + λ 0<br />

as claimed.<br />

p∑<br />

|φ j |.<br />

j=1<br />

3.2 Limit in <strong>distribution</strong><br />

Asymptotic normality <strong>of</strong> independent, but not necessarily identically distributed random<br />

variables is usually proved by verifying <strong>the</strong> so called Lindeberg-Feller condition.<br />

Theorem 3.2.0.14. (Van der Vaart, 2000, Proposition 2.27) For each n ∈ N, let<br />

ξ n,1 , . . . , ξ n,kn<br />

be independent random vectors with finite variances Σ n,1 , . . . , Σ n,kn<br />

such that<br />

k n ∑<br />

i=1<br />

(<br />

)<br />

E ‖ξ n,i ‖ 2 1 {‖ξn,i ‖>ε} → 0 for every ε > 0<br />

and<br />

k n ∑<br />

i=1<br />

Σ n,i → Σ<br />

Then<br />

k n ∑<br />

i=1<br />

(<br />

)<br />

ξ n,i − E(ξ n,i ) N (0, Σ)<br />

The Lindeberg-Feller condition will also be used later to prove a partial asymptotic normality<br />

result for <strong>the</strong> adaptive <strong>Lasso</strong>.<br />

Theorem 3.2.0.15. (Convergence in <strong>distribution</strong>) If λ n / √ n → λ 0 ≥ 0 and C is<br />

nonsingular <strong>the</strong>n<br />

√ n( ˆβ − β) → arg min(V )<br />

where<br />

V (u) = −2u ′ W + u ′ Cu + λ 0<br />

for W ∼ N (0, σ 2 C).<br />

p∑<br />

(sgn(β j )I(β j ≠ 0) + |u j |I(β j = 0))<br />

j=1<br />

Pro<strong>of</strong>. Define V n : R p → R as<br />

V n (u) =<br />

n∑<br />

i=1<br />

(<br />

(ε 2 i − u ′ x i / √ ) p∑<br />

n) 2 − ε 2 (<br />

i + λ n |βj + u j / √ n| − |β j | ) ,<br />

j=1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!