21.06.2014 Views

Subsampling estimates of the Lasso distribution.

Subsampling estimates of the Lasso distribution.

Subsampling estimates of the Lasso distribution.

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

4.1 Variable selection consistency 37<br />

For <strong>the</strong> second part <strong>of</strong> <strong>the</strong> claim, first note that<br />

max ‖|η nj |˜s n1 − |η nj |s n1 ‖ 2 ∑k n ∣<br />

= max ∣|η nj |/| ˜β ni | − |η nj |/|η ni | ∣ 2 ∑k n ≤ M 2 |η nj | − | ˜β ni |<br />

n2<br />

j>k n j>k n<br />

∣<br />

i=1<br />

i=1<br />

| ˜β nj ||η ni | ∣<br />

(<br />

) 2<br />

≤ max || η nj | − | ˜β<br />

k n 2<br />

∑<br />

nj ||<br />

M n2<br />

1≤j≤k n ∣|η ni |<br />

(1 2 + | ˜β<br />

)<br />

ni |/|η ni | − 1 ∣<br />

(<br />

=<br />

max || η nj | − | ˜β nj ||<br />

1≤j≤k n<br />

i=1<br />

) 2 ∑k n ∣<br />

i=1<br />

= o P (1/r 2 n) O P (1) 2 M 2 n1 = o P (1).<br />

M n2<br />

|η ni | 2 (1 + o P (1)) ∣<br />

Next, we have<br />

∣ ∣∣| max ˜βnj | − |η nj | ∣ ‖˜s n1 ‖ = o P (1/r n )(1 + o P (1))M n1 = o P (1)<br />

j>k n<br />

The second part <strong>of</strong> <strong>the</strong> claim now follows from <strong>the</strong> triangle inequality.<br />

2<br />

2<br />

4.1 Variable selection consistency<br />

Theorem 4.1.0.9. (Huang et al., 2008, Theorem 1)(Variable selection consistency<br />

<strong>of</strong> <strong>the</strong> adaptive <strong>Lasso</strong>) Suppose that assumptions B.1 to B.5 are valid, <strong>the</strong>n<br />

( )<br />

P ˆβn = s β 0 → 1.<br />

Pro<strong>of</strong>. From subdifferential calculus, we know that a vector ˆβ n ∈ R pn is a solution to <strong>the</strong><br />

adaptive <strong>Lasso</strong> problem if <strong>the</strong> <strong>the</strong> subdifferential ∂L n ( ˆβ n ) <strong>of</strong> <strong>the</strong> objective function at ˆβ n<br />

contains <strong>the</strong> point zero, that is<br />

{ x<br />

′ j (y − X ˆβ n ) = λ n w nj sgn( ˆβ nj ), if ˆβ nj ≠ 0<br />

∣<br />

∣x ′ j (y − X) ˆβ<br />

∣ ∣∣<br />

n < λn w nj , if ˆβ (4.1.0.5)<br />

nj = 0<br />

Fur<strong>the</strong>rmore, if <strong>the</strong> vector family<br />

solution. Define<br />

˜s n1 =<br />

{<br />

x j , ˆβ<br />

}<br />

nj ≠ 0 is linearly independent, <strong>the</strong>n ˆβ n is unique<br />

(<br />

| ˜β n1 | −1 sgn(β 01 ), . . . , | ˜β<br />

) ′<br />

nkn | −1 sgn(β 0kn )<br />

and<br />

ˆβ n1 = ( X ′ n1X n1<br />

) −1 ( X<br />

′<br />

n1 y − λ n˜s n1<br />

)<br />

= β 01 + 1 (<br />

n C−1 n1 X<br />

′ )<br />

1 ε − λ n˜s n1<br />

If ˆβ n1 = s β 01 <strong>the</strong>n 4.1 holds for ˆβ<br />

(<br />

n = ˆβ′ n1, 0 ′) ′<br />

. For this particular ˆβn we have X ˆβ n =<br />

X 1 ˆβ n1 . The family {x j , 1 ≤ j ≤ k n } is <strong>the</strong>n linearly independent, hence X ′ n1 X n1 regular<br />

and we obtain that ˆβ n = s β 0 if<br />

{<br />

∣ ˆβn1 = s β 01<br />

∣x ′ j (y − X n1 ˆβ (4.1.0.6)<br />

n1 ) ∣ < λ n w nj , k n < j ≤ p n

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!