21.06.2014 Views

Subsampling estimates of the Lasso distribution.

Subsampling estimates of the Lasso distribution.

Subsampling estimates of the Lasso distribution.

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

52 <strong>Subsampling</strong><br />

Pro<strong>of</strong>. We prove (iii), (i) and (ii) are established by similar arguments. By part (iii) <strong>of</strong><br />

Lemma 5.2.2.4, for arbitrary ε > 0 and 0 < γ < 1, we have<br />

(<br />

)<br />

P<br />

sup |L n (x, P ) − J n (x, P )}| ≤ ε<br />

x∈R<br />

≥ 1 − δ 3,n (ε, γ, P )<br />

The claim directly follows from <strong>the</strong> last claim <strong>of</strong> Lemma 5.2.2.2 with Ĝ(x) = L n(x, P ) and<br />

X = R n (X (n) , P ) with probability <strong>distribution</strong> function F (x) = J n (x, P ).<br />

We are now able to prove Theorem 5.2.1.1.<br />

Pro<strong>of</strong>. We prove (iii), <strong>the</strong> arguments for (i) and (ii) go along <strong>the</strong> same lines. For arbitrary<br />

ε > 0 and 0 < γ < 1, define<br />

δ 3,n (ε, γ, P ) = 1<br />

√ {<br />

}<br />

2π<br />

+ 1 sup{|J b (x, P ) − J n (x, P )|} > (1 − γ)ε<br />

γε k n x∈R<br />

By Lemma 5.2.2.5, we have<br />

(<br />

)<br />

L −1<br />

n (α) ≤ R n ≤ L −1<br />

n (1 − α) ≥ 1 −<br />

(<br />

inf P<br />

P ∈P<br />

α + ε + sup{δ 3,n (ε, γ, P )}<br />

P ∈P<br />

Under <strong>the</strong> assumption lim n→∞ sup P ∈P sup x∈R |J n (x, P ) − J b (x, P )| = 0, for ε fixed we<br />

have sup P ∈P {δ 3,n (ε, γ, P )} → 0. By a diagonal argument, one argues that <strong>the</strong>re exists a<br />

sequence ε n ↘ 0 such that sup P ∈P {δ 3,n (ε n , γ, P )} → 0. Applying Lemma 5.2.2.5 to <strong>the</strong><br />

sequence {ε n } n∈N yields<br />

lim inf<br />

n→∞<br />

(<br />

inf P<br />

P ∈P<br />

L −1<br />

n<br />

)<br />

(α) ≤ R n ≤ L −1<br />

n (1 − α) ≥ 1 − 2α<br />

For <strong>the</strong> o<strong>the</strong>r inequality we show that lim sup n→∞ inf P ∈P P ( L −1<br />

n (α) ≤ R n ≤ L −1<br />

n (1 − α) ) ≤<br />

1 − 2α. Consider an arbitrary P 0 ∈ P. Then for every ε > 0 and 0 < γ < 1,<br />

(<br />

)<br />

P 0 L −1<br />

n (α) ≤ R n L −1<br />

n (1 − α)<br />

(<br />

)<br />

= P 0 L −1<br />

n (α) ≤ R n ≤ L −1<br />

n (1 − α); sup |J n (x) − L n (x)| ≤ ε<br />

x∈R<br />

)<br />

+ P 0<br />

(<br />

≤ P 0<br />

(<br />

L −1<br />

n<br />

L −1<br />

n<br />

(α) ≤ R n ≤ L −1<br />

n<br />

(α) ≤ R n ≤ L −1<br />

n<br />

+ P 0<br />

(sup |J n (x) − L n (x)| > ε<br />

x∈R<br />

(<br />

)<br />

≤ P 0 Jn<br />

−1 (α) ≤ R n ≤ Jn −1 (1 − α) + δ 3,n (ε, γ, P 0 )<br />

= 1 − 2α + δ 3,n (ε, γ, P 0 )<br />

(1 − α); sup |J n (x) − L n (x)| > ε<br />

x∈R<br />

)<br />

(1 − α); Jn<br />

−1 (α − ε) ≤ L −1<br />

n (α); L −1<br />

n (1 − α) ≤ Jn −1 (1 − α + ε)<br />

)<br />

where Lemma 5.2.2.3 have been used in <strong>the</strong> first inequality. Fur<strong>the</strong>r, under <strong>the</strong> assumption<br />

lim n→∞ sup P ∈P sup x∈R |J n (x, P ) − J b (x, P )| = 0, we have<br />

This completes <strong>the</strong> pro<strong>of</strong>.<br />

1 − 2α + δ 3,n (ε, γ, P 0 ) → 1 − 2α.<br />

)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!