21.06.2014 Views

Subsampling estimates of the Lasso distribution.

Subsampling estimates of the Lasso distribution.

Subsampling estimates of the Lasso distribution.

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

35<br />

exists a constant K d depending on d only such that<br />

∥ ⎡ (∣ ∥∥∥∥ψd ∣∣∣∣ ∑<br />

a i ε i ≤ K d<br />

⎣E<br />

n [<br />

∑ n<br />

n∑<br />

∥<br />

i=1<br />

= K d<br />

⎡<br />

⎣E<br />

≤ K d<br />

⎡<br />

⎢<br />

≤ K d<br />

⎡<br />

⎣E<br />

∣) ∣∣∣∣<br />

a i ε i +<br />

i=1<br />

(∣( ∣∣∣∣ ∑ n<br />

)<br />

a i ε i · 1<br />

∣<br />

i=1<br />

⎛( ∑ n<br />

⎣E ⎝<br />

(( n ∑<br />

) ⎞ 2<br />

a i ε i ⎠<br />

i=1<br />

a 2 i ε 2 i<br />

i=1<br />

] ⎤ 1/d ′<br />

‖a i ε i ‖ d′ ⎦<br />

ψ d<br />

i=1<br />

) [<br />

∣ ∑ n<br />

1/2<br />

+<br />

] ⎤ 1/d ′<br />

|a i | d′ ‖ε i ‖ d′ ⎦<br />

ψ d<br />

i=1<br />

[ n<br />

] ⎤<br />

+ (1 + K) 1/d C −1/d ∑ 1/d ′<br />

|a i | d′ ⎥ ⎦<br />

i=1<br />

)) 1/2<br />

+ (1 + K) 1/d C −1/d [ n ∑<br />

⎡<br />

[ n<br />

] ⎤<br />

=≤ K d<br />

⎣σ + (1 + K) 1/d C −1/d ∑ 1/d ′<br />

|a i | d′ ⎦<br />

i=1<br />

] ⎤ 1/d ′<br />

|a i | d′ ⎦<br />

i=1<br />

Here, Hölder’s inequality and Lemma 4.0.2.4 have been used in <strong>the</strong> second inequality. For<br />

1 < d ≤ 2, d ′ = d/(d − 1) ≥ 2, which implies<br />

It follows that<br />

(<br />

n∑<br />

n<br />

)<br />

∑ d ′ /2<br />

|a i | d′ ≤ |a i | 2 = 1<br />

i=1<br />

i=1<br />

∥ n∑ ∥∥∥∥ψd (<br />

a<br />

∥ i ε i ≤ K d σ + (1 + K) 1/d C −1/d)<br />

i=1<br />

For d = 1, by Lemma 4.0.2.7, <strong>the</strong>re exists some constant K 1 such that<br />

∥ (∣ n∑ ∥∥∥∥ψ1 ∣∣∣∣ a<br />

∥ i ε i ≤ K 1<br />

[E<br />

n ∣) ]<br />

∑ ∣∣∣∣<br />

a i ε i + ‖ max |a iε i |‖ ψ1<br />

1≤i≤n<br />

i=1<br />

i=1<br />

]<br />

≤ K 1<br />

[σ + K ′ log(n) max ‖a iε i ‖ ψ1<br />

1≤i≤n<br />

]<br />

≤ K 1<br />

[σ + K ′ (1 + K)C −1 log(n) max |a i|<br />

1≤i≤n<br />

]<br />

≤ K 1<br />

[σ + K ′ (1 + K)C −1 log(n)<br />

where Hölder’s inequality and Lemma 4.0.2.6 have been used in <strong>the</strong> second inequality.<br />

Finally, note that an arbitrary random variable X, <strong>the</strong> following holds<br />

P (X > t‖X‖ ψd ) ≤ (1 + ψ d (t)) −1 (1 + E (ψ d (|X|/‖X‖ ψd )))<br />

≤ 2 exp(−t d )<br />

for all t > 0, by Markov’s inequality and by definition <strong>of</strong> <strong>the</strong> ψ d -Orlicz norm.<br />

(<br />

Lemma 4.0.2.8. Let ˜s n1 = | ˜β<br />

′<br />

nj | −1 sgn(β 0j ))<br />

and s n1 = ( | η˜<br />

nj | −1 sgn(β 0j ) ) ′<br />

j∈J j∈J n1<br />

.<br />

n1<br />

Suppose that assumption B.2 holds. Then,<br />

‖˜s n1 ‖ = (1 + o P (1)) M n1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!