21.06.2014 Views

Subsampling estimates of the Lasso distribution.

Subsampling estimates of the Lasso distribution.

Subsampling estimates of the Lasso distribution.

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

50 <strong>Subsampling</strong><br />

where <strong>the</strong> left hand side is <strong>the</strong> sum <strong>of</strong> n! identically distributed random ) variables, indeed<br />

given some π ∈ S n , for every 1 ≤ i ≤ k n ,<br />

(X π(b(i−1)+1) , . . . , X π(bi) is a sample <strong>of</strong> size b<br />

from <strong>the</strong> <strong>distribution</strong> P . For an arbitrary ε > 0 we have<br />

(<br />

)<br />

)<br />

P<br />

sup |Z n (x, P ; X 1 , . . . , X n )| > ε<br />

x∈R<br />

(<br />

1<br />

≤ P<br />

n! sup |S n (x, P ; X π(1) , . . . , X π(n) )| > ε<br />

x∈R<br />

)<br />

≤ 1 (sup<br />

ε E |S n (x, P ; X 1 , . . . , X n )|<br />

≤ 1 ε<br />

x∈R<br />

∫ ( 1<br />

0<br />

P<br />

sup |S n (x, P ; X 1 , . . . , X n ) > u|<br />

x∈R<br />

where Markov’s inequality have been used in <strong>the</strong> second inequality and Fubini’s <strong>the</strong>orem<br />

in <strong>the</strong> third one. Applying <strong>the</strong> Dvoretzky-Kiefer-Wolfowitz inequality 5.2.2.1 to <strong>the</strong> root<br />

R b (X n,(b),i , P ), we obtain<br />

P<br />

(<br />

sup |Z n (x, P ; X 1 , . . . , X n )| > ε<br />

x∈R<br />

)<br />

≤ 1 ε<br />

≤ 2 ε<br />

∫ 1<br />

0<br />

2 exp(−2k n u 2 )du<br />

√<br />

2π<br />

k n<br />

(<br />

Φ(2 √ k n − 1 2 ) )<br />

≤ 1 ε<br />

√<br />

2πkn<br />

where Φ(·) is <strong>the</strong> standard normal probability <strong>distribution</strong> function, this proves <strong>the</strong> first<br />

inequality <strong>of</strong> <strong>the</strong> claim. Fur<strong>the</strong>r, for arbitrary 0 < δ < 1, following previous arguments,<br />

and after partitioning <strong>the</strong> unit interval according to δ, we obtain<br />

(<br />

)<br />

≤ 1 (<br />

)<br />

ε E<br />

P<br />

sup |Z n (x, P ; X 1 , . . . , X n )| > ε<br />

x∈R<br />

sup |S n (x, P ; X 1 , . . . , X n )|<br />

x∈R<br />

≤ δ ε + 1 (sup<br />

ε P |S n (x, P ; X 1 , . . . , X n )| > δ<br />

x∈R<br />

Applying <strong>the</strong> Dvoretzky-Kiefer-Wolfowitz inequality 5.2.2.1 to bound <strong>the</strong> second term on<br />

<strong>the</strong> right hand side yields <strong>the</strong> second part <strong>of</strong> <strong>the</strong> claim.<br />

Lemma 5.2.2.4. Let X (n) = (X 1 , . . . , X n ) be an i.i.d. sequence <strong>of</strong> random variables with<br />

<strong>distribution</strong> P . Denote by J n (x, P ) <strong>the</strong> <strong>distribution</strong> <strong>of</strong> a real-valued root R n = R n (X (n) , P )<br />

under P . Let k n = ⌊n/b⌋ and define L n (x, P ) according to 5.2.2.5. Then, for every ε > 0<br />

and every 0 < γ < 1, <strong>the</strong> following hold:<br />

(i) P (sup x∈R {L n (x, P ) − J n (x, P )} > ε) ≤<br />

√ {<br />

}<br />

1 2π<br />

+ 1 sup{J b (x, P ) − J n (x, P )} > (1 − γ)ε<br />

γε k n x∈R<br />

(ii) P (sup x∈R {J n (x, P ) − L n (x, P )} > ε) ≤<br />

√ {<br />

}<br />

1 2π<br />

+ 1 sup{J n (x, P ) − J b (x, P )} > (1 − γ)ε<br />

γε k n x∈R<br />

)<br />

du<br />

)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!