21.06.2014 Views

Subsampling estimates of the Lasso distribution.

Subsampling estimates of the Lasso distribution.

Subsampling estimates of the Lasso distribution.

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

26 Application to <strong>the</strong> <strong>Lasso</strong> estimator<br />

Conversely, suppose that 3.2.1.2 holds, we show that <strong>the</strong> minimizer necessarily satisfies<br />

û 2 = 0. Indeed, if û 2 ≠ 0 <strong>the</strong>n <strong>the</strong> equality is attained in 3.2.1.2 at every line corresponding<br />

to nonzero components <strong>of</strong> û 2 , that is,<br />

⎧<br />

(<br />

(<br />

) ) ⎪⎨<br />

−W 2 + C 21 C −1<br />

11 (W 1 − λ 0 sgn(β)) + C 22 − C 21 C −1<br />

11 C 12 û 2 = − λ 0<br />

2 , if ûj 2 > 0<br />

j ⎪ ⎩<br />

λ 0<br />

2 , if ûj 2 < 0<br />

In particular, it follows from 3.2.1.2 that<br />

{<br />

((<br />

) )<br />

C 22 − C 21 C −1<br />

11 C 12 û 2 ∈ [−λ0 , 0], if û j 2 > 0<br />

j [0, λ 0 ] if û j 2 < 0 (3.2.1.3)<br />

Note that (C 22 − C 21 C −1<br />

11 C 12), <strong>the</strong> Schur complement <strong>of</strong> C, is SPD since C is. Let<br />

D be <strong>the</strong> matrix which results from (C 22 − C 21 C −1<br />

11 C 12) after removal <strong>of</strong> <strong>the</strong> lines and<br />

columns corresponding to <strong>the</strong> zero components <strong>of</strong> û 2 , D is also SPD. Let û≠0 2 be <strong>the</strong> vector<br />

which results from û 2 after removal <strong>of</strong> <strong>the</strong> zero components. Then 3.2.1.3 implies that<br />

û≠0 T<br />

2 Dû≠0 2 ≤ 0 which contradicts <strong>the</strong> fact that D is SPD, this complete <strong>the</strong> argument.<br />

Finally, we show that every component <strong>of</strong> <strong>the</strong> limit <strong>distribution</strong> has a discontinuity at <strong>the</strong><br />

point zero only, and is o<strong>the</strong>rwise Gaussian. Consider after an eventual permutation <strong>of</strong> <strong>the</strong><br />

last p − r covariates a fur<strong>the</strong>r partitioning <strong>of</strong> W 2 , u 2 and C <strong>of</strong> <strong>the</strong> form<br />

( )<br />

W2,1<br />

W 2 =<br />

W 2,0<br />

u 2 =<br />

(<br />

u2,1<br />

u 2,0<br />

)<br />

,<br />

and<br />

C =<br />

⎛<br />

⎜<br />

⎝<br />

⎞<br />

C 11 C 12 C 13<br />

⎟<br />

C 21 C 22 C 23 ⎠<br />

C 31 C 32 C 33<br />

respectively, where W 2,1 and u 2,1 are r ′ -vectors for some 0 < r ′ < p − r. For notational<br />

convenience, denote<br />

( )<br />

C11 C ˜C = 12<br />

.<br />

C 21 C 22<br />

Next, consider an arbitrary sign pattern s ′ ∈ {−1, +1} r′ . Then, given <strong>the</strong> event<br />

{ sgn(u2,1 ) = s ′ ; u 2,0 = 0 } ,<br />

(u 1 , u 2,1 ) ′ has <strong>the</strong> following <strong>distribution</strong> :<br />

( ) (<br />

( ))<br />

u1<br />

∼ N σ 2 λ 0 ˜C, −<br />

u 2,1 2 ˜C −1 sgn(β)<br />

s ′<br />

This completes <strong>the</strong> pro<strong>of</strong>.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!