21.06.2014 Views

Subsampling estimates of the Lasso distribution.

Subsampling estimates of the Lasso distribution.

Subsampling estimates of the Lasso distribution.

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

5.2 Uniform consistency for quantiles appproximation 47<br />

5.2.1 Statement <strong>of</strong> <strong>the</strong> general result<br />

Theorem 5.2.1.1. (Uniform asymptotic validity <strong>of</strong> subsampling) Let X (n) =<br />

(X 1 , . . . , X n ) be an i.i.d. sequence <strong>of</strong> random variables with <strong>distribution</strong> P ∈ P. Denote<br />

by J n (x, P ) <strong>the</strong> <strong>distribution</strong> <strong>of</strong> a real-valued root R n = R n (X (n) , P ) under P . Let<br />

b = b n < n be a sequence <strong>of</strong> positive integers tending to infinity, but satisfying b/n → 0.<br />

Let N n = ( b<br />

n<br />

) and<br />

L n (x, P ) = 1<br />

N n<br />

∑<br />

1≤i≤N n<br />

1{R b (X n,(b),i , P ) ≤ x}, (5.2.1.1)<br />

where X n,(b),i denotes <strong>the</strong> i-th subset <strong>of</strong> data <strong>of</strong> size b. Then, <strong>the</strong> following statements are<br />

true for every α ∈ (0, 1) :<br />

(i) If lim sup n→∞ sup P ∈P sup x∈R {J b (x, P ) − J n (x, P )} ≤ 0, <strong>the</strong>n<br />

lim inf<br />

n→∞<br />

(<br />

)<br />

inf P R n ≤ L −1<br />

n (1 − α, P ) ≥ 1 − α (5.2.1.2)<br />

P ∈P<br />

(ii) If lim sup n→∞ sup P ∈P sup x∈R {J n (x, P ) − J b (x, P )} ≤ 0, <strong>the</strong>n<br />

lim inf<br />

n→∞<br />

(<br />

)<br />

inf P R n ≥ L −1<br />

n (α, P ) ≥ 1 − α (5.2.1.3)<br />

P ∈P<br />

(iii) If lim sup n→∞ sup P ∈P sup x∈R |J b (x, P ) − J n (x, P )| = 0, <strong>the</strong>n 5.2.1.2 and 5.2.1.3 hold<br />

with <strong>the</strong> lim inf n→∞ and ≥ replaced by lim n→∞ and =, respectively. Moreover,<br />

(<br />

)<br />

lim inf P L −1<br />

n→∞<br />

n (α, P ) ≤ R n ≤ L −1<br />

n (1 − α, P ) = 1 − 2α (5.2.1.4)<br />

P ∈P<br />

Remark. Consider again <strong>the</strong> root R n <strong>of</strong> <strong>the</strong> previous section:<br />

R n (X (n) , P ) = τ n (ˆθ n − θ(P )) (5.2.1.5)<br />

where ˆθ n = ˆθ n (X (n) ) is an estimate <strong>of</strong> a real-valued parameter θ(P ) and tau n > 0 is<br />

a normalizing sequence tending to infinity. For <strong>the</strong> feasible estimate ˆL n (x) <strong>of</strong> J n (x, P )<br />

defined as<br />

we have<br />

L −1<br />

n (1 − α, P ) = inf<br />

ˆL n (x) = 1<br />

N n<br />

⎧<br />

⎨<br />

1<br />

x∈R ⎩N n<br />

⎧<br />

⎨ 1<br />

= inf<br />

x∈R ⎩N n<br />

=<br />

∑<br />

1≤i≤N n<br />

1<br />

(<br />

τ b (X n,(b),i − ˆθ<br />

)<br />

n )<br />

⎫<br />

∑<br />

)<br />

⎬<br />

1{τ b<br />

(ˆθb (X n,(b),i ) − θ(P ) ≤ x} ≥ 1 − α<br />

⎭<br />

1≤i≤N n<br />

⎫<br />

∑<br />

1{τ b<br />

(ˆθb (X n,(b),i ) − ˆθ<br />

)<br />

⎬<br />

n ≤ x − τ b (ˆθ n − θ(P ))}<br />

⎭<br />

1≤i≤N n<br />

ˆL<br />

−1<br />

n (1 − α) + τ b (ˆθ n − θ(P ))<br />

Hence, under <strong>the</strong> conditions <strong>of</strong> Theorem 5.2.1.1, we obtain for this particular root<br />

(i) lim inf n→∞ inf P ∈P P<br />

(<br />

)<br />

(τ n − τ b )(ˆθ n − θ(P )) ≤ ˆL<br />

−1<br />

n (1 − α) ≥ 1 − α

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!