21.06.2014 Views

Questionnaire Dwelling Unit-Level and Person Pair-Level Sampling ...

Questionnaire Dwelling Unit-Level and Person Pair-Level Sampling ...

Questionnaire Dwelling Unit-Level and Person Pair-Level Sampling ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Appendix A: Technical Details about the Generalized<br />

Exponential Model<br />

A.1 Distance Function<br />

Let Δ(w,d) denote the distance between the initial weights d { dk k∈s}<br />

= : <strong>and</strong> the<br />

adjusted weights w, with k being the k th unit in the sample, <strong>and</strong> s, the sample selected. The<br />

distance function minimized under the generalized exponential model (GEM), subject to<br />

calibration constraints, is given by<br />

d ⎧<br />

⎫<br />

k ⎪<br />

ak −l<br />

k<br />

uk −ak<br />

⎪<br />

Δ ( w,d ) = ∑ . ( − ) log + ( − ) log ,<br />

k∈s<br />

⎨ ak l<br />

k<br />

uk ak<br />

⎬<br />

Ak ⎪⎩<br />

c −l<br />

−<br />

k k<br />

uk<br />

a<br />

k ⎪⎭<br />

(A.1.1)<br />

ak w<br />

k<br />

/d<br />

k,Ak u l k k<br />

/ ⎣ uk ck c l k k<br />

⎤⎦,<br />

<strong>and</strong> l , , k<br />

ck<br />

<strong>and</strong> uk<br />

are prescribed real<br />

numbers. Let T x denote the p-vector of control totals corresponding to predictor variables (x 1 , ...,<br />

x p ). Then, the calibration constraints for the above minimization problem are<br />

where = = ( − ) ⎡( − )( − )<br />

∑ .<br />

∈ k k k<br />

=<br />

x<br />

(A.1.2)<br />

k s x da T<br />

The solution for the above minimization problem, if it exists, is given by a GEM with<br />

model parameters 8, i.e.,<br />

a<br />

k<br />

l<br />

λ =<br />

( )<br />

( u − c ) + u ( c −l<br />

) exp{ A x′<br />

λ}<br />

( u − c ) + ( c −l<br />

) exp{ A x′<br />

λ}<br />

k k k k k k k k<br />

k k k k k k<br />

.<br />

(A.1.3)<br />

Note that the number of parameters in GEM should be # n, where n is the size of the sample s.<br />

This is also the dimension of vectors d <strong>and</strong> w. It follows from Equation A.1.3 that<br />

l < a < u , k = 1, K , n.<br />

(A.1.4)<br />

k k k<br />

The usual raking ratio method (see, e.g., Singh & Mohl, 1996) of weight adjustment is a<br />

special case of GEM, such that for l = 0, u =∞ , c = 1, <strong>and</strong> k = 1, K , n, we have<br />

<strong>and</strong><br />

Δ<br />

∑<br />

k k k<br />

∑<br />

( w d ) = d a log a − d ( a − 1)<br />

, (A.1.5)<br />

k∈s<br />

k<br />

a<br />

k<br />

k<br />

k<br />

k∈s<br />

( λ ) exp ( x′<br />

λ )<br />

= .<br />

The logit method of Deville <strong>and</strong> Särndal (1992) is also a special case of GEM by setting<br />

lk<br />

= l , uk<br />

= u,<br />

<strong>and</strong> c<br />

k<br />

= 1 for all k.<br />

k<br />

k<br />

k<br />

A-3

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!