30.08.2014 Views

biologia - Studia

biologia - Studia

biologia - Studia

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

A MATHEMATICAL MODEL FOR AN EPIDEMIC IN AN OPEN SOCIETY<br />

So, by tending τ to zero we deduce the following system:<br />

.<br />

⎧<br />

⎪<br />

S(<br />

t)<br />

= A[<br />

η(<br />

t)<br />

x(<br />

t)<br />

− β ( t)<br />

S(<br />

t)<br />

I(<br />

t)<br />

− d(<br />

t)<br />

S(<br />

t)]<br />

.<br />

⎨I(<br />

t)<br />

= A[<br />

β ( t)<br />

S(<br />

t)<br />

I(<br />

t)<br />

− d(<br />

t)<br />

I(<br />

t)<br />

−α(<br />

t)<br />

I(<br />

t)]<br />

(*)<br />

.<br />

⎪<br />

⎪x(<br />

t)<br />

= A[<br />

η(<br />

t)<br />

x(<br />

t)<br />

− (1 − h(<br />

t))<br />

α(<br />

t)<br />

I(<br />

t)<br />

− d(<br />

t)<br />

x(<br />

t)]<br />

⎩<br />

.<br />

where A = u(0)<br />

is a constant in the interval (0,1].<br />

.<br />

.<br />

η ( t ) = b(<br />

t)<br />

− g(<br />

t)<br />

e(<br />

t)<br />

b(<br />

t)<br />

− g(<br />

t)<br />

e(<br />

t)<br />

b(<br />

t)<br />

+ c(<br />

t)<br />

f ( t)<br />

+ c(<br />

t)<br />

f ( t)<br />

+ b(<br />

t),<br />

and S ( t)<br />

+ I(<br />

t)<br />

+ R(<br />

t)<br />

= x(<br />

t).<br />

.<br />

Discussion on the compatibility of the model and its applied results<br />

In the system (*) if we put e ( t)<br />

= f ( t)<br />

= c(<br />

t)<br />

= b(<br />

t)<br />

= 0, b(<br />

t)<br />

= d(<br />

t),<br />

and A = 1,<br />

then we conclude the system:<br />

.<br />

⎧<br />

⎪<br />

S(<br />

t)<br />

= −β<br />

( t)<br />

S(<br />

t)<br />

I(<br />

t)<br />

.<br />

⎨I(<br />

t)<br />

= β ( t)<br />

S(<br />

t)<br />

I(<br />

t)<br />

− ( d(<br />

t)<br />

+ α(<br />

t))<br />

I(<br />

t)<br />

.<br />

.<br />

⎪<br />

⎪ x(<br />

t)<br />

= −(1<br />

− h(<br />

t))<br />

α(<br />

t)<br />

I(<br />

t)<br />

⎩<br />

When β ( t),<br />

d(<br />

t)<br />

and α (t)<br />

are constant functions and h ( t)<br />

= 1 then the<br />

above system reduce to the following SIR model (Farkas, 2001, Kermack and<br />

McKendrick, 1927):<br />

.<br />

⎧<br />

⎪<br />

S(<br />

t)<br />

= −βS(<br />

t)<br />

I(<br />

t)<br />

.<br />

⎨I(<br />

t)<br />

= βS(<br />

t)<br />

I(<br />

t)<br />

− ( d + α)<br />

I(<br />

t)<br />

.<br />

.<br />

⎪<br />

⎪ x(<br />

t)<br />

= 0<br />

⎩<br />

Let A = 1 , e(<br />

t)<br />

= f ( t)<br />

= c(<br />

t)<br />

= 0,<br />

and let b(t) and d(t) be two constant<br />

functions. Then we conclude the following generalization of the SIR model with<br />

the vital dynamics (Brauer, 2008, Hethcote, 1976):<br />

.<br />

.<br />

.<br />

63

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!