30.08.2014 Views

biologia - Studia

biologia - Studia

biologia - Studia

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

M. R. MOLAEI<br />

.<br />

⎧<br />

⎪<br />

S(<br />

t)<br />

= bx(<br />

t)<br />

− β ( t)<br />

S(<br />

t)<br />

I(<br />

t)<br />

− d(<br />

t)<br />

S(<br />

t)<br />

.<br />

⎨I(<br />

t)<br />

= β ( t)<br />

S(<br />

t)<br />

I(<br />

t)<br />

− d(<br />

t)<br />

I(<br />

t)<br />

− α(<br />

t)<br />

I(<br />

t)<br />

.<br />

.<br />

⎪<br />

⎪x(<br />

t)<br />

= bx(<br />

t)<br />

− (1 − h(<br />

t))<br />

α(<br />

t)<br />

I(<br />

t)<br />

− d(<br />

t)<br />

x(<br />

t)<br />

⎩<br />

In fact when α ( t),<br />

β ( t)<br />

and d(t) are constant functions then we deduce the<br />

usual SIR model with the vital dynamics.<br />

d(<br />

t)<br />

+ α(<br />

t)<br />

.<br />

In the system (*) if S(<br />

t)<br />

= then I ( t)<br />

= 0.<br />

So I (t)<br />

is a<br />

β ( t)<br />

constant such as c. If we put S(t) in the equation<br />

.<br />

S(<br />

t)<br />

= A[<br />

η ( t)<br />

x(<br />

t)<br />

− β ( t)<br />

S(<br />

t)<br />

I(<br />

t)<br />

− d(<br />

t)<br />

S(<br />

t)]<br />

then we can find the following relation between x(t) and d(t):<br />

.<br />

.<br />

( d(<br />

t)<br />

+ α ( t))<br />

β ( t)<br />

− β ( t)(<br />

d(<br />

t)<br />

+ α(<br />

t))<br />

x( t)<br />

=<br />

2<br />

Aβ<br />

( t)<br />

2<br />

d ( t)<br />

d(<br />

t)<br />

α(<br />

t)<br />

+ ( d(<br />

t)<br />

+ α ( t))<br />

c + + .<br />

β ( t)<br />

β ( t)<br />

The equation:<br />

.<br />

x(<br />

t)<br />

= A[<br />

η ( t)<br />

x(<br />

t)<br />

− (1 − h(<br />

t))<br />

α(<br />

t)<br />

I(<br />

t)<br />

− d(<br />

t)<br />

x(<br />

t)]<br />

determines the recovery rate h(t) by:<br />

.<br />

.<br />

x(<br />

t)<br />

x(<br />

t)(<br />

d(<br />

t)<br />

−η(<br />

t))<br />

h(<br />

t)<br />

= 1+<br />

+<br />

.<br />

α(<br />

t)<br />

Ac cα<br />

( t)<br />

So by this recovery rate we can sure that there is no any epidemic of the<br />

d(<br />

t)<br />

+ α(<br />

t)<br />

.<br />

disease. Moreover if S(<br />

t)<br />

< then I ( t)<br />

< 0 and there is no epidemic,<br />

β ( t)<br />

d(<br />

t)<br />

+ α(<br />

t)<br />

but if S(<br />

t)<br />

> then there is an epidemic of the disease.<br />

β ( t)<br />

64<br />

Conclusion<br />

In this paper we try to introduce a new mathematical model which can<br />

apply for the diseases which are carried by passengers such as influenza. The recovery<br />

rate is the main biological result of this model. The consideration of this model<br />

from the mathematical viewpoint is also a topic for further research.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!