14.09.2014 Views

Impact of fuel supply impedance and fuel staging on gas turbine ...

Impact of fuel supply impedance and fuel staging on gas turbine ...

Impact of fuel supply impedance and fuel staging on gas turbine ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

6.3 Identificti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame transfer functi<strong>on</strong>s<br />

c<strong>on</strong>structive superpositi<strong>on</strong> between the c<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the individual coefficients.<br />

To further analyze the relevant physical mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> the behavior observed,<br />

simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>figurati<strong>on</strong> with two <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stages were carried<br />

out using impulse forcing.<br />

Flame resp<strong>on</strong>se to impulse forcing <str<strong>on</strong>g>of</str<strong>on</strong>g> velocity at the burner exit<br />

The first transient CFD simulati<strong>on</strong> with impulse forcing was performed with<br />

excitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>ly the main air-<str<strong>on</strong>g>fuel</str<strong>on</strong>g> velocity inlet. The <str<strong>on</strong>g>fuel</str<strong>on</strong>g> mass flow rate at <str<strong>on</strong>g>fuel</str<strong>on</strong>g><br />

injector ”2” was kept c<strong>on</strong>stant. The amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the impulse in flow velocity<br />

was set to 10% <str<strong>on</strong>g>of</str<strong>on</strong>g> the mean value. As it is not possible to numerically resolve<br />

an impulse that is enforced during <strong>on</strong>ly <strong>on</strong>e time step, a impulse durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

20 time steps is chosen. The results obtained are normalized according to the<br />

excitati<strong>on</strong> level <str<strong>on</strong>g>of</str<strong>on</strong>g> the CFD/SI simulati<strong>on</strong>.<br />

The resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame should exhibit a similar behavior as the UIR u<br />

obtained with broadb<str<strong>on</strong>g>and</str<strong>on</strong>g> forcing. A comparis<strong>on</strong> between the CFD/SI unit<br />

impulse resp<strong>on</strong>se <str<strong>on</strong>g>and</str<strong>on</strong>g> the UIR determined with impulse forcing is presented<br />

in Fig. 6.20. For the first time delays both resp<strong>on</strong>se vectors match very well.<br />

For later times, the result <str<strong>on</strong>g>of</str<strong>on</strong>g> the impulse forcing shows oscillati<strong>on</strong>s, caused by<br />

partial reflecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the impulse signal at the boundaries <str<strong>on</strong>g>of</str<strong>on</strong>g> the computati<strong>on</strong>al<br />

domain. These spurious features are not representative <str<strong>on</strong>g>of</str<strong>on</strong>g> the resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the flame to the impulse excitati<strong>on</strong>. To explain the undershoot <str<strong>on</strong>g>of</str<strong>on</strong>g> the UIR,<br />

the temporal development <str<strong>on</strong>g>of</str<strong>on</strong>g> flame fr<strong>on</strong>t surface area <str<strong>on</strong>g>and</str<strong>on</strong>g> heat release rate<br />

are tracked, which is presented in Fig. 6.21. The flame fr<strong>on</strong>t is defined as an<br />

iso-surface <str<strong>on</strong>g>of</str<strong>on</strong>g> the progress variable with c = 0.5. In additi<strong>on</strong> a cut through<br />

the flame in a meridi<strong>on</strong>al plane at several instances in time is presented in<br />

Fig. 6.22 <str<strong>on</strong>g>and</str<strong>on</strong>g> 6.23. The undisturbed flame fr<strong>on</strong>t is shown in Fig. 6.21 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

6.22 <str<strong>on</strong>g>and</str<strong>on</strong>g> is denoted as state ”A”. When the increased mass flow reaches the<br />

burner exit, the flame is first pushed downstream resulting in a stretched<br />

flame fr<strong>on</strong>t at the burner exit, especially in the inner shear layer. After a<br />

short time delay the flame is reacting to the disturbance with an increased<br />

flame speed <str<strong>on</strong>g>and</str<strong>on</strong>g> heat release rate. As a c<strong>on</strong>sequence, the flame moves again<br />

129

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!