14.09.2014 Views

Impact of fuel supply impedance and fuel staging on gas turbine ...

Impact of fuel supply impedance and fuel staging on gas turbine ...

Impact of fuel supply impedance and fuel staging on gas turbine ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Numerical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> thermo-acoustic instabilities<br />

perturbati<strong>on</strong>s. Hettel et al. [42] studied the resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> a premixed turbulent<br />

axial methane jet flame using unsteady RANS simulati<strong>on</strong> with a sinusoidal<br />

modulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the inlet mass flow. A LES simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a double swirler<br />

premixed burner was performed by Giauque et al. [36] at three different<br />

frequencies. The simulati<strong>on</strong> was able to identify two main flow structures,<br />

namely a toroidal structure <str<strong>on</strong>g>and</str<strong>on</strong>g> a precessing vortex core attached to the center<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the axial swirler, which modulates the global heat release rate. The obvious<br />

drawback <str<strong>on</strong>g>of</str<strong>on</strong>g> these approaches is that numerous simulati<strong>on</strong>s are necessary<br />

to obtain a transfer functi<strong>on</strong> over a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> frequencies. To reduce the<br />

computati<strong>on</strong>al effort Bohn et al. [12] used a sudden increase <str<strong>on</strong>g>of</str<strong>on</strong>g> the inlet mass<br />

flow as excitati<strong>on</strong> signal, which c<strong>on</strong>tains by design multiple frequencies. A<br />

Laplace transformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the resulting unit functi<strong>on</strong> resp<strong>on</strong>se represents the<br />

flame dynamics in the frequency domain. Polifke et al. [102] proposed an<br />

advanced system identificati<strong>on</strong> method (CFD/SI) based <strong>on</strong> digital signal theory<br />

to post-process time series data generated by transient CFD simulati<strong>on</strong><br />

with broadb<str<strong>on</strong>g>and</str<strong>on</strong>g> excitati<strong>on</strong>. The method uses auto- <str<strong>on</strong>g>and</str<strong>on</strong>g> cross-correlati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> time series <str<strong>on</strong>g>of</str<strong>on</strong>g> ”signals” <str<strong>on</strong>g>and</str<strong>on</strong>g> ”resp<strong>on</strong>ses” <str<strong>on</strong>g>and</str<strong>on</strong>g> the Wiener-Hopf-Inversi<strong>on</strong><br />

to identify unit impulse resp<strong>on</strong>ses (UIR). The acoustic transfer functi<strong>on</strong> or<br />

transfer matrix is obtained by a z-transform <str<strong>on</strong>g>of</str<strong>on</strong>g> the unit impulse resp<strong>on</strong>ses. In<br />

their work they successfully obtained the acoustic transfer matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> a gauze<br />

in a Rjike tube. Gentemann et al. applied the approach to determine the<br />

transfer matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> a sudden jump in cross-secti<strong>on</strong> in compressible flow [34]<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> a flame transfer functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a perfect premixed combusti<strong>on</strong> system [35].<br />

In the latter case [35] the ”signal” is the velocity fluctuati<strong>on</strong> close to the burner<br />

exit, whereas the heat release rate fluctuati<strong>on</strong> caused downstream is regarded<br />

as the "resp<strong>on</strong>se". A similar method was developed by Zhu et al. [6, 135],<br />

which describes the flame resp<strong>on</strong>se as an infinite impulse resp<strong>on</strong>se (IIR) filter<br />

model. The model coefficients are determined by a least square estimati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the signals. As in [35], the ”outputs” <str<strong>on</strong>g>of</str<strong>on</strong>g> the IIR model are fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

heat release rate, while the ”inputs” are fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the flow variable.<br />

A different method, based <strong>on</strong> steady state simulati<strong>on</strong>s, is proposed by van<br />

Kampen et al. [129]. The authors calculated the transfer functi<strong>on</strong> using a<br />

linear coefficient method in combinati<strong>on</strong> with an efficient order reducti<strong>on</strong><br />

algorithm.<br />

36

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!