14.09.2014 Views

Impact of fuel supply impedance and fuel staging on gas turbine ...

Impact of fuel supply impedance and fuel staging on gas turbine ...

Impact of fuel supply impedance and fuel staging on gas turbine ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

3.3 Acoustic network model<br />

where A denotes the cross-secti<strong>on</strong>al area <str<strong>on</strong>g>of</str<strong>on</strong>g> the element. C<strong>on</strong>sidering a timeharm<strong>on</strong>ic<br />

dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> the acoustic variables (Eqn. (3.25)) Eqn. (3.43) yields:<br />

i ω l eff u ′ i + [ p<br />

′<br />

ρ 0<br />

+ u 0 u ′ ] j<br />

i<br />

+ u 0j ζu ′ j<br />

= 0. (3.45)<br />

The sec<strong>on</strong>d necessary relati<strong>on</strong> for a compact element can be derived using the<br />

integral mass c<strong>on</strong>servati<strong>on</strong> equati<strong>on</strong>:<br />

d<br />

d t<br />

∫ ∫<br />

ρ dV + ρ u d A= 0. (3.46)<br />

C<strong>on</strong>sidering <strong>on</strong>e-dimensi<strong>on</strong>al flows <str<strong>on</strong>g>and</str<strong>on</strong>g> linearizing this equati<strong>on</strong> results in:<br />

d<br />

d t<br />

∫ x j<br />

x i<br />

ρ ′ A d x+ [ (ρ ′ u 0 + ρ 0 u ′ )A ] j<br />

i<br />

= 0. (3.47)<br />

Again a time-harm<strong>on</strong>ic dependence (Eqn. (3.25)) <str<strong>on</strong>g>of</str<strong>on</strong>g> the acoustic variables<br />

is assumed. If the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> sound is c<strong>on</strong>stant <strong>on</strong>e obtains introducing<br />

∫ x j<br />

x i<br />

A(x)/A j ≡ l red <str<strong>on</strong>g>and</str<strong>on</strong>g> using Eqn. (3.18)<br />

i ω<br />

c i<br />

p ′ [(<br />

i<br />

p<br />

′<br />

) ] j<br />

l red A j +<br />

c i c M+ ρ 0 u ′ A<br />

i<br />

= 0, (3.48)<br />

where M denotes the Mach number (M = u 0 /c). The values <str<strong>on</strong>g>of</str<strong>on</strong>g> the first term<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the left h<str<strong>on</strong>g>and</str<strong>on</strong>g> side <str<strong>on</strong>g>of</str<strong>on</strong>g> Eqn. (3.48) <str<strong>on</strong>g>and</str<strong>on</strong>g> Eqn. (3.45) are in case <str<strong>on</strong>g>of</str<strong>on</strong>g> compact elements<br />

small <str<strong>on</strong>g>and</str<strong>on</strong>g> are omitted in the following. A further simplificati<strong>on</strong> can<br />

be made if the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> sound <str<strong>on</strong>g>and</str<strong>on</strong>g> the density are assumed to be c<strong>on</strong>stant<br />

over the element (c i = c j = c, ρ 0i = ρ 0j = ρ 0 ). Dividing Eqn. (3.45) by c <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Eqn. (3.48) by ρ 0 leads to the following relati<strong>on</strong>s for compact elements:<br />

[ ( p<br />

′<br />

)] j<br />

A<br />

ρ 0 c M+ u′ = 0,<br />

i<br />

[ p<br />

′<br />

] j<br />

ρ 0 c + M u′ + ζ j M j u ′ j<br />

= 0. (3.49)<br />

i<br />

57

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!