06.11.2014 Views

Lifespan and Causes of Death in the Irish Wolfhound - Vetsuisse ...

Lifespan and Causes of Death in the Irish Wolfhound - Vetsuisse ...

Lifespan and Causes of Death in the Irish Wolfhound - Vetsuisse ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

first-generation progeny. The broadness <strong>of</strong> <strong>the</strong> genogram thus gives an impression <strong>of</strong><br />

<strong>the</strong> effective breed<strong>in</strong>g population size at a given time.<br />

5 4<br />

3<br />

2<br />

1<br />

6<br />

Masked<br />

Inbreed<strong>in</strong>g<br />

Exponential<br />

Growth<br />

WW 2<br />

1939-45<br />

Interwar<br />

years<br />

WW 1<br />

1914-18<br />

Consolidation<br />

ca. 1890-1914<br />

1860: Initiation<br />

<strong>of</strong> Modern<br />

Breed<strong>in</strong>g<br />

Fig. 7.1: Typical genogram <strong>of</strong> an <strong>Irish</strong> <strong>Wolfhound</strong> born <strong>in</strong> 2000 (field <strong>in</strong> <strong>the</strong> far left),<br />

illustrat<strong>in</strong>g <strong>the</strong> occurrence <strong>of</strong> several genetic bottlenecks dur<strong>in</strong>g <strong>the</strong> history <strong>of</strong> <strong>the</strong><br />

population. The numbers <strong>in</strong> <strong>the</strong> figure refer to <strong>the</strong> occurrences described <strong>in</strong> table 7.1<br />

above. Compare this graph to fig. 6.3 <strong>and</strong> 6.4<br />

Note that <strong>the</strong> third <strong>and</strong> fourth genetic bottleneck do not appear as separate<br />

occurrences <strong>in</strong> this graph due to <strong>the</strong>ir closeness <strong>in</strong> time. The studied <strong>in</strong>dividual is<br />

subject to an average level <strong>of</strong> <strong>in</strong>breed<strong>in</strong>g (COI(5)=0.0078; COI(10)=0.1120;<br />

COI(20)=0.2707; Meuwissen's Inbreed<strong>in</strong>g Coefficient = 0.3470).<br />

7.2.2 Inbreed<strong>in</strong>g <strong>and</strong> <strong>Lifespan</strong><br />

7.2.2.1 Mechanisms <strong>of</strong> Inbreed<strong>in</strong>g Depression<br />

Inbreed<strong>in</strong>g depression cannot occur if gene effects are purely additive – some<br />

degree <strong>of</strong> dom<strong>in</strong>ance <strong>and</strong>/or epistatic <strong>in</strong>teraction between genes is necessary.<br />

Currently, <strong>the</strong>re are two ma<strong>in</strong> <strong>the</strong>ories on <strong>the</strong> genetic mechanisms underly<strong>in</strong>g<br />

<strong>in</strong>breed<strong>in</strong>g depression: The partial dom<strong>in</strong>ance model <strong>and</strong> <strong>the</strong> overdom<strong>in</strong>ance model<br />

(Charlesworth <strong>and</strong> Charlesworth 1987).<br />

The partial dom<strong>in</strong>ance model <strong>of</strong> <strong>in</strong>breed<strong>in</strong>g depression postulates that <strong>in</strong>breed<strong>in</strong>g<br />

depression is caused by <strong>the</strong> accumulation <strong>of</strong> recessive deleterious alleles that can<br />

occur as <strong>the</strong> degree <strong>of</strong> homozygosis <strong>in</strong>creases. This accumulation <strong>of</strong> recessive<br />

deleterious alleles ("genetic load") that are normally masked by dom<strong>in</strong>ance effects <strong>in</strong><br />

<strong>the</strong> heterozygous form results <strong>in</strong> a loss <strong>of</strong> fitness <strong>in</strong> <strong>the</strong> <strong>in</strong>bred population, which can<br />

be expected to be proportional to <strong>the</strong> degree <strong>of</strong> deleteriousness <strong>in</strong> <strong>the</strong> relevant<br />

alleles.<br />

97

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!