06.01.2015 Views

The Real And Complex Number Systems

The Real And Complex Number Systems

The Real And Complex Number Systems

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Proof: Use Cauchy-Schwarz inequality twice, we then have<br />

( n∑<br />

) ⎡ 4 ( n∑<br />

) ⎤ 2<br />

2<br />

a k b k c k = ⎣ a k b k c k<br />

⎦<br />

k=1<br />

k=1<br />

( n∑<br />

) 2 ( n∑<br />

) 2<br />

≤ a 2 kc 2 k b 2 k<br />

k=1<br />

k=1<br />

( n∑<br />

) 2 ( n∑<br />

) ( n∑<br />

≤ a 4 k c 4 k<br />

k=1<br />

k=1 k=1<br />

( n∑<br />

) ( n∑<br />

) 2 ( n∑<br />

= a 4 k b 2 k<br />

k=1 k=1 k=1<br />

b 2 k<br />

c 4 k<br />

) 2<br />

)<br />

.<br />

1.25 Prove that Minkowski’s inequality:<br />

( n∑<br />

k=1<br />

(a k + b k ) 2 ) 1/2<br />

≤<br />

a 2 k) 1/2<br />

+<br />

b 2 k) 1/2<br />

.<br />

( n∑<br />

k=1<br />

( n∑<br />

k=1<br />

This is the triangle inequality ‖a + b‖ ≤ ‖a‖+‖b‖ for n−dimensional vectors,<br />

where a = (a 1 , ..., a n ) , b = (b 1 , ..., b n ) and<br />

‖a‖ =<br />

( n∑<br />

k=1<br />

a 2 k) 1/2<br />

.<br />

Proof: Consider<br />

n∑<br />

n∑ n∑<br />

n∑<br />

(a k + b k ) 2 = a 2 k + b 2 k + 2 a k b k<br />

k=1<br />

k=1<br />

k=1<br />

k=1<br />

(<br />

n∑ n∑<br />

n∑<br />

) 1/2 ( n∑ 1/2<br />

≤ a 2 k + b 2 k + 2 a 2 k bk) 2 by Cauchy-Schwarz inequality<br />

k=1 k=1<br />

k=1<br />

k=1<br />

⎡<br />

1/2 ) ⎤ 1/2<br />

2<br />

= ⎣ ak) 2 +<br />

⎦ .<br />

( n∑<br />

( n∑<br />

k=1<br />

k=1<br />

b 2 k<br />

17

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!