06.01.2015 Views

The Real And Complex Number Systems

The Real And Complex Number Systems

The Real And Complex Number Systems

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Show that k1<br />

a 2n2<br />

1 a 2n2<br />

a 2n1 <br />

a 2n<br />

1 a 2n<br />

for n 1, 2, . . .<br />

1 −1 k a k converges if, and only if, ∑ k1<br />

−1 k a k converges.<br />

a<br />

1c<br />

Proof: First, we note that if b, then 1 a1 − b 1, and if b <br />

1a<br />

c , then<br />

1 1 − b1 c. Hence, by hypothesis, we have<br />

1 1 a 2n 1 − a 2n1 *<br />

and<br />

1 1 a 2n2 1 − a 2n1 . **<br />

()Suppose that ∑ <br />

k1<br />

−1 k a k converges, then lim k→ a k 0. Consider Cauchy<br />

Condition for product,<br />

1 −1 p1 a p1 1 −1 p2 a p2 1 −1 pq a pq − 1 for q 1, 2, 3, . . . .<br />

If p 1 2m, andq 2l, then<br />

1 −1 p1 a p1 1 −1 p2 a p2 1 −1 pq a pq − 1<br />

|1 a 2m 1 − a 2m1 1 a 2m2l − 1|<br />

≤ 1 a 2m − 1by(*)and(**)<br />

a 2m → 0.<br />

<br />

Similarly for other cases, so we have proved that k1<br />

1 −1 k a k converges by<br />

Cauchy Condition for product.<br />

()This is a counterexample as follows. Let a n −1 n<br />

n, thenitiseasytoshowthat<br />

a 2n2<br />

a<br />

1 a 2n1 <br />

2n2<br />

In addition,<br />

n<br />

<br />

k1<br />

1 −1 k a k <br />

k1<br />

However, consider<br />

n<br />

∑<br />

k1<br />

n<br />

∑<br />

k1<br />

n<br />

∑<br />

k1<br />

n<br />

n<br />

a 2k − a 2k−1 <br />

exp 1<br />

2k<br />

exp −1k<br />

k<br />

− exp<br />

exp<br />

expb k 1<br />

2k 1<br />

2k − 1<br />

<br />

exp −1n<br />

n<br />

a 2n<br />

1 a 2n<br />

for n 1, 2, . . .<br />

−1<br />

2k − 1<br />

n<br />

∑<br />

k1<br />

−1 k<br />

k<br />

,whereb k ∈<br />

≥ ∑ exp−1 1<br />

k1<br />

2k 1<br />

2k − 1<br />

So, by <strong>The</strong>orem 8.13, we proved the divergence of ∑ k1<br />

→ as n → .<br />

<br />

−1 k a k .<br />

− 1<br />

≥ 0 for all<br />

→ exp− log 2 as n → .<br />

−1<br />

2k − 1 , 1<br />

2k<br />

8.45 A complex-valued sequence fn is called multiplicative if f1 1andif<br />

fmn fmfn whenever m and n are relatively prime. (See Section 1.7) It is called<br />

completely multiplicative if<br />

f1 1andiffmn fmfn for all m and n.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!