06.01.2015 Views

The Real And Complex Number Systems

The Real And Complex Number Systems

The Real And Complex Number Systems

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

In addition,<br />

n<br />

(2). ∑<br />

k1<br />

(1). lim n→<br />

A n b n1 exists.<br />

n<br />

|A k b k1 − b k | ≤ M ∑<br />

k1<br />

<br />

|b k1 − b k | ≤ M ∑<br />

k1<br />

|b k1 − b k |.<br />

(2) implies that<br />

n<br />

(3). ∑ A k b k1 − b k converges.<br />

k1<br />

n<br />

By (1) and (3), we have shown that ∑ k1<br />

a k b k converges.<br />

Remark: (1) <strong>The</strong> result is first discovered by Richard Dedekind (1831-1916).<br />

(2) <strong>The</strong>re is an exercise by (b), we write it as a reference. Show the convergence of the<br />

<br />

k<br />

−1<br />

series ∑ k1<br />

.<br />

k<br />

Proof: Leta k −1 k<br />

, then in order to show the convergence of<br />

1/3<br />

<br />

∑ k1<br />

−1<br />

k<br />

and b<br />

k 2/3 k 1<br />

k<br />

, it suffices to show that ∑<br />

k k1<br />

a k : S n<br />

n ∈ N, there exists j ∈ N such that j 2 ≤ N j 1 2 . Consider<br />

S n a 1 a 2 a 3 a 4 ...a 8 a 9 ....a 15 ...a j<br />

2 ...a n<br />

n<br />

is bounded sequence. Given<br />

≤ 3a 3 5a 4 7a 15 9a 16 ..4k − 1a 2k 2 −1 4k 1a 2<br />

2k<br />

if j 2k, k ≥ 2<br />

3a 3 5a 4 7a 15 9a 16 ..4k − 3a 2k−2<br />

2 if j 2k − 1, k ≥ 3<br />

then as n large enough,<br />

S n ≤ −3a 4 5a 4 −7a 16 9a 16 ... −4k − 1a 2k<br />

2 4k 1a 2k<br />

2<br />

−3a 4 5a 4 −7a 16 9a 16 ... −4k − 5a 2k−2<br />

2 4k − 3a 2k−2<br />

2<br />

which implies that as n large enough,<br />

<br />

<br />

S n ≤ 2 ∑ a 2j<br />

2 2 ∑<br />

1<br />

j2<br />

j2 2j 4/3 : M 1 *<br />

Similarly, we have<br />

M 2 ≤ S n for all n **<br />

By (*) and (**), we have shown that<br />

n<br />

a k : S n is bounded sequence.<br />

∑ k1<br />

Note: (1) By above method, it is easy to show that<br />

<br />

−1<br />

k<br />

∑<br />

k1<br />

converges for p 1/2. For 0 p ≤ 1/2, the series diverges by<br />

1<br />

n 2 p ... 1<br />

n 2 2n p ≥ 2n 1<br />

n 2 n p ≥ 2n 1<br />

n 2 n p ≥ 2n 1<br />

n 1 2p ≥ 2n n 1 1 1.<br />

k p<br />

log k<br />

−1<br />

.<br />

k<br />

<br />

(2) <strong>The</strong>re is a similar question, show the divergence of the series ∑ k1<br />

Proof: Weuse<strong>The</strong>orem 8.13 to show it by inserting parentheses as follows. We insert<br />

k<br />

−1log<br />

parentheses such that the series ∑ forms ∑−1 k b k . If we can show ∑−1 k b k<br />

k

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!