13.04.2015 Views

Taylor - Theoretic Arithmetic.pdf - Platonic Philosophy

Taylor - Theoretic Arithmetic.pdf - Platonic Philosophy

Taylor - Theoretic Arithmetic.pdf - Platonic Philosophy

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

BOOK Two 137<br />

Hence it appears that the eighth perfect number is the 16th<br />

6-92 +320<br />

term of the series produced by the expansion of<br />

1-20+ 64.<br />

As however there are only eight perfect numbers in twenty<br />

terms of this series, it is evident that Ruffus in his Commentary<br />

on the <strong>Arithmetic</strong> of Boetius, was greatly mistaken in<br />

asserting that every other term in the series is a perfect number.<br />

It is remarkable in this series that the terms alternately end<br />

in 6 and 8. This is also true of the four first perfect numbers;<br />

but the other four end indeed in 6 and 8, yet not alternately.<br />

The other terms also of this series, from their correspondence<br />

with perfect numbers, may be called partially perfect. For<br />

both are resolved by 2 and its powers into parts, the aggregates<br />

of which are equal to the wholes; and both are terminated by<br />

6 and 8.<br />

Again, in the series 1 +8+32+512+8192, &c. produce<br />

1-8-96<br />

by the expansion of the half of each of the terms<br />

1-16,<br />

after the first is a square number. Thus the half of 8, of 32, of<br />

512, kc. viz. 4, 16,216, are square numbers. And if each of the<br />

terms of the series 6+28+4%+8128+ 130816, kc. is doubled,<br />

the sum of the parts of each is a square number. Thus the sum<br />

of the parts of 12, the double of 6 is 16; the sum of the parts<br />

of 56, the double of 28, is 64; the sum of the parts of 992, the<br />

double of 496, is 1024, the root of which is 32; of the parts of<br />

16256, the double of 8128, is 16384, the square root of which<br />

is 128; and of the parts of 216632, the double of 130816, is<br />

262144, the square root of which is 512. And so of the rest;<br />

all the roots after the second increasing in a quadruple ratio.<br />

As this property also extends to the terms that are not perfect<br />

numbers as well as to those that are, it shows in a still greater<br />

degree the correspondence of what I call the partially perfect,<br />

with the completely perfect numbers.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!