13.04.2015 Views

Taylor - Theoretic Arithmetic.pdf - Platonic Philosophy

Taylor - Theoretic Arithmetic.pdf - Platonic Philosophy

Taylor - Theoretic Arithmetic.pdf - Platonic Philosophy

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

dle. And these indeed are the common and known definitions<br />

of the even and the odd. But the definition of them according<br />

to the Pythagoric discipline is as follows: The even number is<br />

that which under the same division may be divided into the<br />

greatest and the least; the greatest in space, and the least in<br />

quantity, according to the contrary passions of these two<br />

genera. But the odd number is that to which this cannot hap<br />

pen, but the natural division of it is into two unequal parts.<br />

Thus for instance, if any given even number is divided, there<br />

is not any section greater than half, so far as pertains to the<br />

space of division, but so far as pertains to quantity, there is no<br />

division less than that which is into two parts. Thus, if the<br />

even number 8, is divided into 4 and 4, there will be no other<br />

division, which will produce greater parts, viz. in which both<br />

the parts will be greater. But also there will be no other division<br />

which will divide the whole number into a less quantity;<br />

for no division is less than a section into two parts. For when<br />

a whole is separated by a triple division, the sum of the space<br />

is diminished, but the number of the division is increased. As<br />

discrete quantity however, beginning from one term, receives<br />

an infinite increase of progression, but continued quantity<br />

may be diminished infinitely, the contrary to this takes place<br />

in the division of the even number; for here the division is<br />

greater in space, but least in quantity. In other words, the<br />

portions of continued quantity are greatest, but the discrete<br />

quantity is the least possible.<br />

According to a more ancient mode likewise, there is another<br />

definition of the even number, which is as follows: The even<br />

number is that which may be divided into two equal, and into<br />

two unequal parts; yet so that in neither division, either parity<br />

will be mingled with imparity, or imparity with parity; except<br />

the binary number alone, the principle of parity, which does<br />

not receive an unequal section, because it consists of two uni-

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!