13.04.2015 Views

Taylor - Theoretic Arithmetic.pdf - Platonic Philosophy

Taylor - Theoretic Arithmetic.pdf - Platonic Philosophy

Taylor - Theoretic Arithmetic.pdf - Platonic Philosophy

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

consequent order, these even numbers will be double of all<br />

the even and odd numbers from unity, that follow eacli<br />

other, and this ad infinitum. For let this natural series of<br />

numbers be given, viz. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.<br />

14. 15. 16. 17. 18. 19. 20. If therefore, in this series, the first<br />

even number is assumed, i.e. 2, it will be the double of the<br />

first, i.e. of unity. But i£ the following even number 4 is<br />

assumed, it will be the double of the second, i.e. of 2. If the<br />

third even number 6 is assumed, it will be the double of the<br />

third number in the natural series, i.e. of 3. But if the fourth<br />

even number is assumed, i.e. 8, it will be the double of the<br />

fourth number 4. And the same thing will take place without<br />

any impediment in the rest of the series ad infinitum.<br />

Triple numbers also are produced, if in the same natural<br />

series two terms are always omitted, and those posterior to the<br />

two are compared to the natural number, 3 being excepted,<br />

which as it is triple of unity passes over 2 alone. After 1 and<br />

2 therefore, 3 follows which is triple of 1. Again, 6 is immediately<br />

after 4 and 5, and is tripie of the second number 2. The<br />

number 9 follows 7 and 8, and is triple of the third number 3.<br />

And the like will take place ad infinitum.<br />

But the generation of quadruple numbers begins by the<br />

omission of 3 terms. Thus after 1. 2. and 3, follows 4, which<br />

is quadruple of the first term 1. Again, by omitting 5, 6, and<br />

7, the number 8, which is the fourth following term, is quadruple<br />

of the second term 2. And after 8, by omitting the three<br />

terms 9, 10, and 11, the following number 12, is quadruple of<br />

the third term 3. This also must necessarily be the case in a<br />

progression to infinity: and if the addition always increases<br />

by the omission of one term, different multiple numbers will<br />

present themselves to the view in admirable order. For by the<br />

omission of four terms a quintuple multiple, of five a sextuple,<br />

of six a septuple, of seven an octuple, and so on, will be pro-

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!