13.04.2015 Views

Taylor - Theoretic Arithmetic.pdf - Platonic Philosophy

Taylor - Theoretic Arithmetic.pdf - Platonic Philosophy

Taylor - Theoretic Arithmetic.pdf - Platonic Philosophy

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

is denominated the evenly-odd, and the third is the oddly-odd.<br />

And the species indeed which are contrary, and obtain the<br />

place of extremes are the evenly-even, and the evenly-odd.<br />

But the species which is a certain medium, and participates of<br />

each of the extremes, is the number which is called oddly-odd.<br />

Again, the evenly-even number is that which may be divided<br />

into two equal parts, and each of these parts into two<br />

other equal parts, and each of these may be divided in a similar<br />

manner, and the division of the parts may be continued<br />

till it is naturally terminated by indivisible unity. Thus the<br />

number 64 has for its half 32, but the half of this is 16, the<br />

half of 16 is 8, the half of 8 is 4, of 4, two, and the half of 2<br />

is 1, which naturally does not admit of division.<br />

To this number it happens that whatever may be its part is<br />

found to be evenly-even both in denomination and quantity.<br />

And it seems that this number was called evenly-even, because<br />

all its parts are found to be evenly-even both in name and<br />

quantity. We shall however hereafter show how this number<br />

has even parts both in quantity and appellation.<br />

But the generation of these numbers is as follows: All numbers<br />

in a duple ratio from unity, will always be found to be<br />

evenly-even; and it is not possible that they should be produced<br />

in any other way. Thus for instance, the numbers in a<br />

duple ratio from unity are 1.2.4.8.16.32.64.128.256.512. and<br />

so on ad infiniturn; for they are all evenly-even, and the ratio<br />

of their progression is duple.<br />

It is remarkable in this series, that if the number of terms<br />

is even, the two middle terms correspond to each other, and<br />

this also will be the case with the terms above these, and so on<br />

till each term meets with the extremities. Thus for instance,<br />

let there be given a series of evenly-even numbers from 1 to<br />

128. In this series therefore, because the number of terms is

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!