16.11.2012 Views

Improvement of Material Flow in the Production and Supply Chain of ...

Improvement of Material Flow in the Production and Supply Chain of ...

Improvement of Material Flow in the Production and Supply Chain of ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

l<strong>in</strong>e. In order to simplify <strong>the</strong> model <strong>and</strong> br<strong>in</strong>g <strong>the</strong> keystones to <strong>the</strong> front, <strong>the</strong> two l<strong>in</strong>es<br />

are jo<strong>in</strong>ed toge<strong>the</strong>r <strong>and</strong> work<strong>in</strong>g simultaneously. The detail situation about <strong>the</strong><br />

preassembly l<strong>in</strong>e <strong>and</strong> ma<strong>in</strong> assembly l<strong>in</strong>e has described <strong>in</strong> chapter three.<br />

Dur<strong>in</strong>g <strong>the</strong> process <strong>of</strong> sett<strong>in</strong>g up model, <strong>the</strong>re is a problem when associat<strong>in</strong>g <strong>the</strong><br />

preassembly l<strong>in</strong>e to <strong>the</strong> ma<strong>in</strong> assembly l<strong>in</strong>e. As shown <strong>in</strong> Figure 3.1, <strong>the</strong>re are five<br />

stations before <strong>in</strong>sert <strong>the</strong> preassembly l<strong>in</strong>e at station 5b. Accord<strong>in</strong>g to <strong>the</strong> data <strong>of</strong><br />

process time shown <strong>in</strong> Table 4.1 below, from <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g to output <strong>the</strong> first product,<br />

<strong>the</strong> work<strong>in</strong>g time <strong>of</strong> first five stations <strong>in</strong> ma<strong>in</strong> assembly l<strong>in</strong>e is 105s, which is shorter<br />

than <strong>the</strong> work<strong>in</strong>g time <strong>of</strong> preassembly l<strong>in</strong>e that is 179s. As a result, for <strong>the</strong> early period<br />

preassembly l<strong>in</strong>e is beh<strong>in</strong>d <strong>the</strong> ma<strong>in</strong> assembly l<strong>in</strong>e. So a buffer with <strong>the</strong> products <strong>of</strong> <strong>the</strong><br />

preassembly l<strong>in</strong>e is needed. By sett<strong>in</strong>g ano<strong>the</strong>r “Stock” block between station 5b <strong>and</strong><br />

station 5, <strong>the</strong> two assembly l<strong>in</strong>es jo<strong>in</strong> toge<strong>the</strong>r at station 5 <strong>of</strong> <strong>the</strong> ma<strong>in</strong> production l<strong>in</strong>e to<br />

smooth <strong>the</strong> simulation. This solution is not discrete form <strong>the</strong> reality s<strong>in</strong>ce <strong>in</strong> <strong>the</strong> virtual<br />

assembly process, <strong>the</strong>re is a small hold<strong>in</strong>g area used to store <strong>the</strong> magnetism parts from<br />

<strong>the</strong> preassembly l<strong>in</strong>e, which can satisfied <strong>the</strong> requirement <strong>of</strong> ma<strong>in</strong> assembly l<strong>in</strong>e. The<br />

“Stock” block <strong>in</strong> <strong>the</strong> model has <strong>the</strong> same function as <strong>the</strong> hold<strong>in</strong>g area. There are several<br />

reasons lead to <strong>the</strong> necessary <strong>of</strong> a hold<strong>in</strong>g area; one <strong>of</strong> <strong>the</strong>m is that <strong>the</strong> cycle time <strong>of</strong> <strong>the</strong><br />

ma<strong>in</strong> assembly is longer than <strong>the</strong> cycle time <strong>of</strong> <strong>the</strong> preassembly l<strong>in</strong>e, which can be<br />

confirmed by <strong>the</strong> data shown <strong>in</strong> Table 4.1. Calculated <strong>the</strong> delayed time, <strong>the</strong> model can<br />

work smoothly as long as more than three items are held <strong>in</strong> <strong>the</strong> stock.<br />

Table 4.1* Work<strong>in</strong>g Parameters <strong>of</strong> Each Station<br />

Station/Ma<strong>in</strong> TID Queue Station/Pre. TID Queue<br />

Capacity<br />

Capacity<br />

1&2 1<br />

3 2<br />

4 3<br />

5b<br />

5<br />

6<br />

4<br />

7<br />

*Because <strong>of</strong> <strong>the</strong> different<br />

8<br />

configurations, TID <strong>of</strong> station 10 <strong>in</strong><br />

9<br />

10<br />

11<br />

ma<strong>in</strong> assembly l<strong>in</strong>e is variation. 7/30<br />

<strong>of</strong> <strong>the</strong> products cost 55s at this station<br />

<strong>and</strong> <strong>the</strong> rests cost 35s.<br />

In <strong>the</strong> model, each buffer before <strong>the</strong> stations is to simulate <strong>the</strong> length <strong>of</strong> <strong>the</strong> queue. All<br />

<strong>the</strong> stations <strong>in</strong>dicate <strong>the</strong> actual work<strong>in</strong>g times <strong>in</strong> <strong>the</strong> assembly l<strong>in</strong>e. The detailed<br />

<strong>in</strong>formation <strong>of</strong> process<strong>in</strong>g time (TID) <strong>and</strong> queue length for each station are listed <strong>in</strong><br />

Table 4.1 above.<br />

Generally speak<strong>in</strong>g, scraps occur <strong>in</strong> station 5b, 6, 8, 10 <strong>and</strong> 11 <strong>of</strong> ma<strong>in</strong> assembly l<strong>in</strong>e.<br />

Statistical analysis work focus on <strong>the</strong>se five stations. First time pass rates <strong>of</strong> <strong>the</strong> five<br />

stations are shown <strong>in</strong> Table 4.2 separately. “Select DE Output” blocks are added after<br />

<strong>the</strong>se stations to simulate <strong>the</strong> pass rates.<br />

21

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!