12.07.2015 Views

Design, Fabrication and Characterization of a Microwave Resonator ...

Design, Fabrication and Characterization of a Microwave Resonator ...

Design, Fabrication and Characterization of a Microwave Resonator ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

List <strong>of</strong> Figures2.1 Different realizations <strong>of</strong> CPW: (a) the conventional CPW, (b) the conductorbacked CPW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42.2 Structure <strong>of</strong> a CPW, a conducting strip <strong>and</strong> two ground planes are placed ona substrate. The CPW is shielded on top <strong>and</strong> bottom by conducting layer. . 42.3 Configuration <strong>of</strong> the air capacitance <strong>of</strong> a CPW. . . . . . . . . . . . . . . . . 52.4 Configuration <strong>of</strong> the dielectric capacitance <strong>of</strong> a CPW. . . . . . . . . . . . . 62.5 Configuration <strong>of</strong> the dielectric capacitance <strong>of</strong> a CBCPW. . . . . . . . . . . 72.6 Schematic <strong>of</strong> a CPW on a double-layer dielectric substrate. . . . . . . . . . 82.7 Frequency dependent effective dielectric constant ε e f f for all designs realizedin this thesis. The cut-<strong>of</strong>f frequencies are indicated by vertical lines foreach substrate material. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102.8 Comparison <strong>of</strong> normal <strong>and</strong> superconducting (@ 4 K) CPW impedance forSilicon <strong>and</strong> Sapphire with a fixed gap width W <strong>of</strong> 5 µm. . . . . . . . . . . 142.9 (a) parallel <strong>and</strong> (b) series lumped element resonant circuits . . . . . . . . . 182.10 Z in for a parallel resonant circuit . . . . . . . . . . . . . . . . . . . . . . . 182.11 Ilustration <strong>of</strong> CPW resonators (a) λ/2 resonator (b) λ/4 resonator. . . . . . 212.12 Dependence <strong>of</strong> the resonance frequency calculated with the kinetic inductancemodel for the Yale design on Silicon <strong>and</strong> Sapphire for a fixed length<strong>of</strong> 8.991 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222.13 Dependence <strong>of</strong> the quality factor calculated with the kinetic inductance modelfor the Yale design on Silicon <strong>and</strong> Sapphire for a fixed length <strong>of</strong> 8.991 mm. 232.14 A two-port device illustrating incident, reflected <strong>and</strong> transmitted waves. . . 243.1 Coupling capacitors used in the paper <strong>of</strong> Frunzio el al [6]. . . . . . . . . . . 294.1 Overview <strong>of</strong> the Niobium CPW fabrication process. . . . . . . . . . . . . . 314.2 Connecting with silver glue (a) on connector (b) grounding on edges. . . . . 344.3 Measurement setup with the cryostat. . . . . . . . . . . . . . . . . . . . . 354.4 Picture <strong>of</strong> the measurement setup with PC (with LabView) on the left, heliumcan on the right <strong>and</strong> RT measurement devices in between. . . . . . . . 365.1 Transmission S 21 <strong>of</strong> R20 <strong>and</strong> R22 at 4 K in the hybrid box. Since therecorded data from R22 was uncalibrated a level <strong>of</strong> 20 dB is added to thedata. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405.2 Coupling Capacitance <strong>of</strong> R20 (same as Figure 3.1 on page 29) . . . . . . . 405.3 overcoupled capacitance <strong>of</strong> R25 . . . . . . . . . . . . . . . . . . . . . . . 4279

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!